High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries

被引:111
|
作者
Zhou, Pengfei [1 ,3 ]
Che, Zhennan [1 ]
Liu, Jing [1 ]
Zhou, Jingkai [1 ]
Wu, Xiaozhong [1 ]
Weng, Junying [2 ]
Zhao, Jinping [1 ]
Cao, Heng [1 ]
Zhou, Jin [1 ]
Cheng, Fangyi [3 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Shandong, Peoples R China
[2] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255049, Shandong, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
关键词
P2/O3 biphasic structure; High entropy; Layered oxide cathode; Initial coulombic efficiency; Sodium ion batteries; LAYERED OXIDE CATHODES; HIGH-ENERGY; RICH; STABILITY; DESIGN;
D O I
10.1016/j.ensm.2023.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered sodium manganese-based oxides are highly attractive cathode materials for sodium-ion batteries but suffer from limited initial coulombic efficiency (ICE) and poor structural stability. Herein, a high-entropy biphasic Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O1.95F0.1 cathode material is reported to exhibit remarkable ICE, rate capability and cyclability. In-situ structural analysis during the preparation of cathode reveals tunable P2/O3 ratios by changing the sintering temperature. The synthesized high-entropy oxide with a P2/O3 ratio of 23:77 (wt%) delivers a high ICE of 97.6%, a considerable discharge capacity of 86.7 mAh g(-1) at current density of 800 mA g(-1), and respectable capacity retention in a wide temperature range from -40 to 50 degrees C. Additionally, full cell coupling Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O1.95F0.1 and hard carbon exhibits an energy density of 268.3 Wh kg(-1) at power density of 1172 W Kg(-1) based on the mass of cathode. Combined experimental and computational investigations suggest that the as-prepared Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O1.95F0.1 cathode favors reversible structural evolution, fast Na+ diffusion kinetics, and low energy barriers due to the unique P2/O3 biphasic structure and high-entropy effect. This study brings an in-depth insight into the design and preparation of high-entropy P2/O3 biphasic cathode to build advanced sodium-ion batteries.
引用
收藏
页码:618 / 627
页数:10
相关论文
共 50 条
  • [1] P2/O3 Biphasic Cathode Material through Magnesium Substitution for Sodium-Ion Batteries
    Zhang, Yixu
    Chen, Jiarui
    Wang, Ruijuan
    Wu, Lei
    Song, Wenhao
    Cao, Shuang
    Shen, Yongqiang
    Zhang, Xiaoyan
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (09) : 11349 - 11360
  • [2] P2/O3 Biphasic Layered Oxide Heterojunction: A Cathode for High-Capacity Sodium-Ion Batteries
    Li, Lun
    Wu, Qibai
    Zhang, Shangshang
    Li, Shengkai
    Cao, Yuliang
    Zhang, Haiyan
    Li, Zhenghui
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9347 - 9355
  • [3] Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries
    Liang, Xinghui
    Yu, Tae-Yeon
    Ryu, Hoon-Hee
    Sun, Yang-Kook
    ENERGY STORAGE MATERIALS, 2022, 47 : 515 - 525
  • [4] High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries
    Li, Ranran
    Qin, Xuan
    Li, Xiaolei
    Zhu, Jianxun
    Zheng, Li-Rong
    Li, Zhongtao
    Zhou, Weidong
    ADVANCED ENERGY MATERIALS, 2024, 14 (26)
  • [5] P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries
    Khan, M. Alam
    Han, Dongwook
    Lee, Gihyeok
    Kim, Yong-Il
    Kang, Yong-Mook
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 771 : 987 - 993
  • [6] A Novel Pentanary Metal Oxide Cathode with P2/O3 Biphasic Structure for High-Performance Sodium-Ion Batteries
    Liang, Xinghui
    Sun, Yang-Kook
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [7] Design of high-entropy P2/O3 hybrid layered oxide cathode material for high-capacity and high-rate sodium-ion batteries
    Hao, Dingbang
    Zhang, Gaoyuan
    Ning, De
    Zhou, Dong
    Chai, Yan
    Xu, Jin
    Yin, Xingxing
    Du, Ruijie
    Schuck, Goetz
    Wang, Jun
    Li, Yongli
    NANO ENERGY, 2024, 125
  • [8] Research progress of high-entropy cathode materials for sodium-ion batteries
    Wu, Fan
    Wu, Shaoyang
    Ye, Xin
    Ren, Yurong
    Wei, Peng
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [9] Deciphering the Origin of High Electrochemical Performance in a Novel Ti-Substituted P2/O3 Biphasic Cathode for Sodium-Ion Batteries
    Hu, Bei
    Geng, Fushan
    Zhao, Chong
    Doumert, Bertrand
    Trebosc, Julien
    Lafon, Olivier
    Li, Chao
    Shen, Ming
    Hu, Bingwen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41485 - 41494
  • [10] Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries
    Zhou, Jingkai
    Liu, Jing
    Li, Yanyan
    Zhao, Zhongjun
    Zhou, Pengfei
    Wu, Xiaozhong
    Tang, Xiaonan
    Zhou, Jin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 758 - 767