Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system

被引:4
|
作者
Caballero-Cardenas, C. [1 ]
Castro, M. J. [1 ]
de Luna, T. Morales [1 ]
Munoz-Ruiz, M. L. [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat Estadist & IO & Matemat Aplicad, Campus Teatinos, Malaga 29071, Spain
关键词
Lagrangian-projection technique; IMEX schemes; Well-balanced; Shallow; -water; GAS-DYNAMICS EQUATIONS; LARGE TIME-STEP; RUNGE-KUTTA SCHEMES; HYPERBOLIC SYSTEMS; STABILITY;
D O I
10.1016/j.amc.2022.127784
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Lagrange-Projection technique in the framework of finite volume schemes applied to the shallow water system. We shall consider two versions of the scheme for the Lagrangian step: one fully implicit and one implicit-explicit, based on how the geometric source term is treated. First and second order well-balanced versions of the schemes are presented, in which the water at rest solutions are preserved. This allows to obtain efficient numerical schemes in low Froude number regimes, as the usual CFL restriction driven by the acoustic waves is avoided.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:24
相关论文
共 31 条
  • [1] On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations
    Del Grosso, A.
    Castro Diaz, M.
    Chalons, C.
    Morales de Luna, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [2] Lagrange-Projection Exactly Well-Balanced Finite Volume Schemes for the Ripa Model
    Caballero-Cardenas, Celia
    Castro Diaz, Manuel J.
    Morales de Luna, Tomas
    Luz Munoz-Ruiz, Maria
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022, 2024, 35 : 27 - 38
  • [3] Implicit Exactly Well-Balanced Finite Volume Schemes for Balance Laws with Singular Source Terms
    Castro, Manuel J.
    Gomez-Bueno, Irene
    Pares, Carlos
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL I, HYP2022, 2024, 34 : 3 - 25
  • [4] HIGH-ORDER FULLY WELL-BALANCED LAGRANGE-PROJECTION SCHEME FOR SHALLOW WATER
    Morales De Luna, Tomas
    Castro Diaz, Manuel J.
    Chalons, Christophe
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (03) : 781 - 807
  • [5] A SECOND-ORDER WELL-BALANCED LAGRANGE-PROJECTION NUMERICAL SCHEME FOR SHALLOW WATER EXNER EQUATIONS IN 1D AND 2D
    Chalons, Christophe
    Del Grosso, Alessia
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (07) : 1839 - 1873
  • [6] A SEMI-IMPLICIT FULLY EXACTLY WELL-BALANCED RELAXATION SCHEME FOR THE SHALLOW WATER SYSTEM
    Caballero-Cardenas, Celia
    Castro, Manuel Jesus
    Chalons, Christophe
    De Luna, Tomas Morales
    Munoz-Ruiz, Maria Luz
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : A2503 - A2527
  • [7] A LARGE TIME-STEP AND WELL-BALANCED LAGRANGE-PROJECTION TYPE SCHEME FOR THE SHALLOW WATER EQUATIONS
    Chalons, Christophe
    Kestener, Pierre
    Kokh, Samuel
    Stauffert, Maxime
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (03) : 765 - 788
  • [8] Implementation of exactly well-balanced numerical schemes in the event of shockwaves: A 1D approach for the shallow water equations
    Akbari, Majid
    Pirzadeh, Bahareh
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (07) : 849 - 895
  • [9] Exploring different possibilities for second-order well-balanced Lagrange-projection numerical schemes applied to shallow water Exner equations
    Chalons, Christophe
    Del Grosso, Alessia
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (06) : 505 - 535
  • [10] Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows
    Noelle, S
    Pankratz, N
    Puppo, G
    Natvig, JR
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) : 474 - 499