The present study demonstrated the wettability properties of grafting silane coupling agents on carbonyl iron (CI)/SiO2 particles for efficient oil/water mixture and emulsion separation. CI particles were first reacted with Tetraethoxysilane (TEOS) to create a magnetic component. Then, CI/SiO2 particles were altered by 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS) and Hexamethyldisilazane (HDMS) to create magnetic superhydrophobic/superoleophilic, recyclable, and reusable sorbent powders. The water contact angle (WCA) values of the as-prepared particles, CI, CI/SiO2, CI/SiO2@FAS, and CI/SiO2@HMDS, were 5.4 degrees +/- 1.3 degrees, 6.4 degrees +/- 1.4 degrees, 151.9 degrees +/- 2.1 degrees, and 170.1 degrees +/- 1.1 degrees, respectively. In addition, the oil contact angles (OCAs) of a variety of oils were found to be equivalent to 0 degrees. Hence, superhydrophobic/superoleophilic particles for kind of different oils were shown sorption capacities of 1.7-3.1 g/g and 2.5-4.3 g/g for CI/SiO2@FAS, and CI/SiO2@HMDS, respectively. Besides, for 1%w/w hexane/water emulsion separation efficiency higher than 99%, the lowest mass was obtained at 50 and 200 mg for CI/SiO2@HDMS and CI/SiO2@HDMS, respectively, suggesting a new effective material for separating tiny oil droplets. Also, the reusability and chemical durability of the superhydrophobic samples made them a prime candidate for use in different harsh conditions.