Structural supercapacitor electrodes for energy storage by electroless deposition of MnO2 on carbon nanotube mats

被引:18
|
作者
Tynan, Benjamin [1 ]
Zhou, Yang [1 ]
Brown, Sonya A. [1 ]
Dai, Liming [2 ]
Rider, Andrew N. [3 ]
Wang, Chun H. [1 ]
机构
[1] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, Australia
[2] Univ New South Wales, Sch Chem Engn, Sydney, Australia
[3] Def Sci & Technol Grp, Aerosp Div, Melbourne, Australia
基金
澳大利亚研究理事会;
关键词
MANGANESE OXIDE; POTASSIUM-PERMANGANATE; BINDER-FREE; PERFORMANCE; COMPOSITES; FIBERS; FABRICATION; OXIDATION; GRAPHITE; GRAPHENE;
D O I
10.1016/j.compscitech.2023.110016
中图分类号
TB33 [复合材料];
学科分类号
摘要
Structural supercapacitors have great potential for the future of electric-powered vehicles and mobile robots, as they can serve a dual purpose of providing structural integrity and storing electric energy. However, a significant challenge in the development of these energy storage structures is the creation of electrodes that are mechanically strong and stiff. Herein, we report an electroless technique for depositing pseudocapacitive manganese dioxide (MnO2) uniformly throughout carbon nanotube (CNT) mats, resulting in multifunctional supercapacitor electrodes with simultaneously enhanced mechanical and electrochemical properties. The deposited MnO2 nanoporous material acts as a structural matrix supporting the CNTs, thus improving the strength and stiffness. Furthermore, the uniform distri-bution of MnO2 nanoparticles throughout the substrate reduces the through-thickness electrical resistance and achieves outstanding rate capability. With the op-timum loading of MnO2 95 wt%, which gives the highest strength, the total capacitance of the electrode material increased by nine times compared to the baseline material, while the tensile strength and stiffness were improved by 110% and 430%, respectively. Employing these high-performance electrodes in supercapacitors results in improved device-level performance. Specifically, the optimum loading of MnO2 increased the device's energy density by around 100 times without compromising the power density. These new high-performance structural electrodes represent a promising technology that could accelerate the practical application of energy storage composite structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Structural evolution of multi-walled carbon nanotube/MnO2 composites as supercapacitor electrodes
    Li, Qiang
    Anderson, Jordan M.
    Chen, Yiqing
    Zhai, Lei
    ELECTROCHIMICA ACTA, 2012, 59 : 548 - 557
  • [2] Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor
    Jae-Hun Jeong
    Jong Woo Park
    Duck Weon Lee
    Ray H. Baughman
    Seon Jeong Kim
    Scientific Reports, 9
  • [3] Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor
    Jeong, Jae-Hun
    Park, Jong Woo
    Lee, Duck Weon
    Baughman, Ray H.
    Kim, Seon Jeong
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Carbon/λ-MnO2 composites for supercapacitor electrodes
    Malak-Polaczyk, A.
    Matei-Ghimbeu, C.
    Vix-Guterl, C.
    Frackowiak, E.
    JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (04) : 969 - 974
  • [5] High stability bacterial cellulose/carbon nanotube/MnO2 composite supercapacitor electrodes
    Liu, Yali
    Zhang, Sufeng
    Hu, Xuxu
    Li, Lei
    Li, Nan
    Liu, Ye
    Jingxi Huagong/Fine Chemicals, 2023, 40 (12): : 2650 - 2658
  • [6] MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor
    Wang, Jiahao
    Guo, Xihong
    Cui, Rongli
    Huang, Huan
    Liu, Bing
    Li, Ying
    Wang, Dan
    Zhao, Dangui
    Dong, Jinquan
    Li, Shucun
    Sun, Baoyun
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11152 - 11159
  • [7] Hierarchical Porous Carbon/MnO2 Hybrids as Supercapacitor Electrodes
    Lee, Min Eui
    Yun, Young Soo
    Jin, Hyoung-Joon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (12) : 9178 - 9181
  • [8] A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes
    Jiang, Hao
    Li, Chunzhong
    Sun, Ting
    Ma, Jan
    NANOSCALE, 2012, 4 (03) : 807 - 812
  • [9] MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
    He, Ying
    Du, Shuangshuang
    Li, Huailong
    Cheng, Qilin
    Pavlinek, Vladimir
    Saha, Petr
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1459 - 1467
  • [10] MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
    Ying He
    Shuangshuang Du
    Huailong Li
    Qilin Cheng
    Vladimir Pavlinek
    Petr Saha
    Journal of Solid State Electrochemistry, 2016, 20 : 1459 - 1467