Adaptive Robot-Human Handovers With Preference Learning

被引:0
|
作者
Perovic, Gojko [1 ,2 ]
Iori, Francesco [1 ,2 ]
Mazzeo, Angela [1 ,2 ]
Controzzi, Marco [1 ,2 ]
Falotico, Egidio [1 ,2 ]
机构
[1] Scuola Super Sant Anna, BioRobot Inst, I-56127 Pisa, Italy
[2] Scuola Super Sant Anna, Dept Excellence Robot, I-56127 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
Human-aware motion planning; human-robot collaboration; machine learning for robot control;
D O I
10.1109/LRA.2023.3306280
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter proposes an adaptive method for robot-to-human handovers under different scenarios. The method combines Dynamic Movement Primitives (DMP) with Preference Learning (PL) to generate online trajectories that are reactive to human motion, modulating the speed of the robot. The PL allows for tuning the coupling parameters of the DMP, tailoring the interaction to each participant personally, and allowing for qualitative analysis of user preferences. Simulation of an interaction-constrained learning task with different optimization techniques is performed to determine an appropriate learning approach for a handover task. The validity of the approach is demonstrated through experiments with participants on two handover tasks, with results indicating that the proposed method leads to seamless and pleasurable interactions.
引用
下载
收藏
页码:6331 / 6338
页数:8
相关论文
共 50 条
  • [1] Learning User Preferences for Robot-Human Handovers
    Quispe, Ana C. Huaman
    Martinson, Eric
    Oguchi, Kentaro
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 834 - 839
  • [2] Robot-Human Handovers Based on Trust
    Walker, Ian D.
    Mears, Laine
    Mizanoor, Rahman S. M.
    Pak, Richard
    Remy, Sekou
    Wang, Yue
    2015 SECOND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI), 2015, : 119 - 124
  • [3] Optometrist's Algorithm for Personalizing Robot-Human Handovers
    Gupte, Vivek
    Suissa, Dan R.
    Edan, Yael
    2023 32ND IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, RO-MAN, 2023, : 2366 - 2372
  • [4] Human Inspired Grip-Release Technique for Robot-Human Handovers
    Khanna, Parag
    Bjorkman, Marten
    Smith, Christian
    2022 IEEE-RAS 21ST INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2022, : 694 - 701
  • [5] Towards Understanding User Preferences in Robot-Human Handovers: How Do We Decide?
    Martinson, E.
    Quispe, A. Huaman
    Oguchi, K.
    2017 26TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2017, : 516 - 521
  • [6] Adaptive Coordination Strategies for Human-Robot Handovers
    Huang, Chien-Ming
    Cakmak, Maya
    Mutlu, Bilge
    ROBOTICS: SCIENCE AND SYSTEMS XI, 2015,
  • [7] Robot-Human Interaction
    St-Onge, David
    Reeves, Nicolas
    Petkova, Nataliya
    COMPANION OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 30 - 38
  • [8] Multimodal User Feedback During Adaptive Robot-Human Presentations
    Axelsson, Agnes
    Skantze, Gabriel
    FRONTIERS IN COMPUTER SCIENCE, 2022, 3
  • [9] Action understanding and imitation learning in a robot-human task
    Erlhagen, W
    Mukovskiy, A
    Bicho, E
    Panin, G
    Kiss, C
    Knoll, A
    van Schie, H
    Bekkering, H
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 261 - 268
  • [10] Embrace a robot-human world
    Veloso, Manuela
    NATURE, 2015, 521 (7553) : 418 - 418