Deep Learning-Based Near-Infrared Hyperspectral Imaging for Food Nutrition Estimation

被引:11
|
作者
Li, Tianhao [1 ,2 ]
Wei, Wensong [3 ,4 ]
Xing, Shujuan [3 ,4 ]
Min, Weiqing [1 ,2 ]
Zhang, Chunjiang [3 ,4 ]
Jiang, Shuqiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Agr Sci, Inst Food Sci & Technol, Beijing 100193, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab Agroprod Proc, Beijing 100193, Peoples R China
关键词
deep learning; near-infrared hyperspectral imaging; food nutrition estimation; wavelength selection; SPECTROSCOPY;
D O I
10.3390/foods12173145
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The limited nutritional information provided by external food representations has constrained the further development of food nutrition estimation. Near-infrared hyperspectral imaging (NIR-HSI) technology can capture food chemical characteristics directly related to nutrition and is widely used in food science. However, conventional data analysis methods may lack the capability of modeling complex nonlinear relations between spectral information and nutrition content. Therefore, we initiated this study to explore the feasibility of integrating deep learning with NIR-HSI for food nutrition estimation. Inspired by reinforcement learning, we proposed OptmWave, an approach that can perform modeling and wavelength selection simultaneously. It achieved the highest accuracy on our constructed scrambled eggs with tomatoes dataset, with a determination coefficient of 0.9913 and a root mean square error (RMSE) of 0.3548. The interpretability of our selection results was confirmed through spectral analysis, validating the feasibility of deep learning-based NIR-HSI in food nutrition estimation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning
    Qi, Hengnian
    Huang, Zihong
    Sun, Zeyu
    Tang, Qizhe
    Zhao, Guangwu
    Zhu, Xuhua
    Zhang, Chu
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [2] Deep-learning-assisted near-infrared hyperspectral imaging for microplastic classification
    Nyakuchena, Melisa
    Juntunen, Cory
    Sung, Yongjin
    POWDER TECHNOLOGY, 2025, 457
  • [3] Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning
    Jin, Baichuan
    Zhang, Chu
    Jia, Liangquan
    Tang, Qizhe
    Gao, Lu
    Zhao, Guangwu
    Qi, Hengnian
    ACS OMEGA, 2022, : 4735 - 4749
  • [4] Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties
    Zhu, Susu
    Zhou, Lei
    Gao, Pan
    Bao, Yidan
    He, Yong
    Feng, Lei
    MOLECULES, 2019, 24 (18):
  • [5] Deep learning for in vivo near-infrared imaging
    Ma, Zhuoran
    Wang, Feifei
    Wang, Weizhi
    Zhong, Yeteng
    Dai, Hongjie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)
  • [6] Near-infrared hyperspectral imaging for polymer particle size estimation
    Pieszczek, Lukasz
    Daszykowski, Michal
    MEASUREMENT, 2021, 186
  • [7] Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning
    Zhang, Chu
    Zhao, Yiying
    Yan, Tianying
    Bai, Xiulin
    Xiao, Qinlin
    Gao, Pan
    Li, Mu
    Huang, Wei
    Bao, Yidan
    He, Yong
    Liu, Fei
    INFRARED PHYSICS & TECHNOLOGY, 2020, 111
  • [8] Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning
    Nie, Pengcheng
    Zhang, Jinnuo
    Feng, Xuping
    Yu, Chenliang
    He, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 296
  • [9] Semisupervised Deep Learning for the Detection of Foreign Materials on Poultry Meat with Near-Infrared Hyperspectral Imaging
    Campos, Rodrigo Louzada
    Yoon, Seung-Chul
    Chung, Soo
    Bhandarkar, Suchendra M.
    SENSORS, 2023, 23 (16)
  • [10] Deep learning-based motion artifact removal in functional near-infrared spectroscopy
    Gao, Yuanyuan
    Chao, Hanqing
    Cavuoto, Lora
    Yan, Pingkun
    Kruger, Uwe
    Norfleet, Jack E.
    Makled, Basiel A.
    Schwaitzberg, Steven
    De, Suvranu
    Intes, Xavier
    NEUROPHOTONICS, 2022, 9 (04)