Optimization design and performance investigation on the cascaded packed-bed thermal energy storage system with spherical capsules

被引:21
|
作者
He, Xibo
Qiu, Jun [1 ]
Wang, Wei
Hou, Yicheng
Ayyub, Mubashar
Shuai, Yong
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimized two-layered PTES system; Experimental study; Spherical PCM capsules; Numerical analysis; Optimized thermal performance; PHASE-CHANGE MATERIALS; PCM;
D O I
10.1016/j.applthermaleng.2023.120241
中图分类号
O414.1 [热力学];
学科分类号
摘要
Most of the previous researches on the cascaded packed-bed latent heat storage (CPTES) system are the thermal performance optimization based on numerical calculation. Experimental studies are few and mainly focus on single design parameter at low-temperature conditions. Lack of the detailed temperature - flow field experimental data and optimization scheme for the CPTES system. In this paper, an optimized two-layered filling structure of packed-bed heat storage system (OT-PTES) was proposed, which considers melting temperature of phase change material (PCM), capsule diameter, and filling volume ratio. The heat transfer process of PCM capsule and heat transfer fluid (HTF) during charging/discharging process were studied in detail by experiments. Under consistent working conditions, the average charging/discharging rate, total heat capacity, overall efficiency, and exergy efficiency was evaluated. And the influences of HTF inlet flow and the volume filling ratio of two-layered on thermal performance were analyzed. Finally, the concentric diffusion model was used to simulate the system to further optimize its hierarchical structure. The results are concluded as follows: (1) The temperature difference between PCM capsule and HTF at the interface changes continuously, and there is also an obvious temperature gradient in the radial direction of HTF, which improves the heat transfer efficiency. (2) Through experiments, the packed-bed with single large/small size PCM capsules are compared with the OT-PTES system. The overall efficiency of the latter is 74.2%, increased by 3.38% and 8.28%, and the exergy efficiency is 62.7%, increased by 7.5% and 52%. It is proved that the OT-PTES system has better charging/discharging performance. (3) When the volume filling rate = 1/2, the system has the best thermal performance (75.04%) and exergy efficiency (67.1%). (4) The numerical simulation results show that the overall performance of the packedbed is optimal when the capsule size composition is 20-30 mm and the temperature difference of PCMs melting point is 60 celcius. In summary, OT-PTES is an optimized system with better heat storage performance. This study can provide experimental data support for the optimal design of the PLTES system and useful guidance for industrial applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules
    He, Xibo
    Qiu, Jun
    Wang, Wei
    Hou, Yicheng
    Ayyub, Mubashar
    Shuai, Yong
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [2] Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature
    Li, Meng-Jie
    Li, Ming-Jia
    Tong, Zi-Xiang
    Li, Dong
    APPLIED THERMAL ENGINEERING, 2021, 186
  • [3] Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels
    Tang, Yong
    Wang, Zhichao
    Zhou, Jinzhi
    Zeng, Chao
    Lyu, Weihua
    Lu, Lin
    Yuan, Yanping
    ENERGY, 2024, 293
  • [4] Thermal analysis of packed bed thermal energy storage system with dimpled spherical capsules
    Yuvaaraj, J. S.
    Deepakkumar, R.
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [5] Experimental studies of packed-bed Thermal Energy Storage system performance
    Ochmann, Jakub
    Bartela, Lukasz
    Rusin, Krzysztof
    Jurczyk, Michal
    Stanek, Bartosz
    Rulik, Sebastian
    Waniczek, Sebastian
    JOURNAL OF POWER TECHNOLOGIES, 2022, 102 (01): : 37 - 44
  • [6] Multi-factor analysis and optimization design of a cascaded packed-bed thermal storage system coupled with adiabatic compressed air energy storage
    Yang, Xueming
    Cui, Jie
    Li, Yi
    Chi, He
    Xie, Jianfei
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [7] Experimental and numerical investigation of packed-bed thermal energy storage utilizing two phase change materials (PCM) in spherical capsules
    Pourhemmati, Shayan
    Hossainpour, Siamak
    Haeri, Seyedeh Zahra
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 210
  • [8] OPTIMIZATION OF A PACKED-BED THERMAL-ENERGY STORAGE UNIT
    TORAB, H
    BEASLEY, DE
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1987, 109 (03): : 170 - 175
  • [9] Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules
    Wu, Ming
    Xu, Chao
    He, Ya-Ling
    APPLIED ENERGY, 2014, 121 : 184 - 195
  • [10] Design of a 100 MWhth packed-bed thermal energy storage
    Zanganeh, G.
    Pedretti, A.
    Zavattoni, S. A.
    Barbato, M. C.
    Haselbacher, A.
    Steinfeld, A.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1071 - 1077