Understanding the mechanism of performance difference when substituting Al for different transition metal ions in Li-rich Mn-based cathode materials

被引:9
|
作者
Cai, Xingpeng [1 ]
Zhang, Ningshuang [1 ,2 ,3 ]
Ding, Hao [1 ]
Zhao, Dongni [1 ,2 ,3 ]
Zhou, Junfei [1 ]
Zhang, Jiawen [1 ]
Song, Linhu [1 ]
Huang, Jin [1 ]
Li, Chunlei [1 ,2 ,3 ]
Li, Shiyou [1 ,2 ,3 ]
机构
[1] Lanzhou Univ Technol, Sch Petrochem Technol, Lanzhou 730050, Peoples R China
[2] Key Lab Low Carbon Energy & Chem Engn Gansu Prov, Lanzhou 730050, Peoples R China
[3] Engn Res Ctr Cathode Mat Lithium ion Battery Gansu, Baiyin 730900, Peoples R China
关键词
Li-rich Mn-based cathode; Al-doped; Density functional theory; Charge transfer; Oxygen release; 1ST-PRINCIPLES; EVOLUTION;
D O I
10.1016/j.actamat.2023.119220
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Al-doped modification strategy by substituting Al for different transition metal ions (TMs, TM = Mn, Ni, Co) has achieved excellent results in improving the cyclic performance of Li-rich Mn-based cathode materials (LRMs). However, the traditional explanation known as "pegging effect" is hard to distinguish how Al works in different TM substitutions. Herein, the electrochemical performances of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 (LRM-Mn), Li1.2Mn0.54Ni0.11Co0.13Al0.02O2 (LRM-Ni) and Li1.2Mn0.54Ni0.13Co0.11Al0.02O2 (LRM-Co) are studied, and LRM-Mn shows the superior long-term cycling stability, especially at the high temperature of 55 degrees C. Density functional theory (DFT) reveals that LRM-Mn crystal structure has higher thermodynamic stability than any other sample, which is advantageous for inhibiting the transition of LRMs to low-energy stable phases during cycling (e.g., spinel phase and rock salt phase). Combined with density of states and Bader charge analyses, we think that the increased thermodynamic stability of LRM-Mn results from the reduction of the charge transfer of Mn and Co ions in a single delithiation process, which lowers the reactivity of TMs, alleviates the Li/TM mixing and inhibits the irreversible oxygen release. In addition, the biggest volume change during the delithiation process was observed when Al was substituted for Co, which results in the materials' premature production of fatigue stresses and intergranular cracking. This work comprehensively explains the modification mechanism of Al-doped in LRMs. It demonstrates practical significance for both the rational design of materials and the electrode electrochemical performance prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Kun Zhang
    Biao Li
    Yuxuan Zuo
    Jin Song
    Huaifang Shang
    Fanghua Ning
    Dingguo Xia
    Electrochemical Energy Reviews, 2019, 2 : 606 - 623
  • [2] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Zhang, Kun
    Li, Biao
    Zuo, Yuxuan
    Song, Jin
    Shang, Huaifang
    Ning, Fanghua
    Xia, Dingguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 606 - 623
  • [3] Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
    Xie, Huixian
    Xiao, Jiacheng
    Chen, Hongyi
    Zhang, Boyang
    Hui, Kwun Nam
    Zhang, Shanqing
    Liu, Chenyu
    Luo, Dong
    Lin, Zhan
    AAPPS BULLETIN, 2024, 34 (01):
  • [4] Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials
    Fu, Xiaolan
    Zhou, Xin'an
    Zhao, Dongni
    Liang, Youwei
    Wang, Peng
    Zhang, Ningshuang
    Tuo, Kuanyou
    Lu, Hongli
    Cai, Xingpeng
    Mao, Liping
    Li, Shiyou
    ELECTROCHIMICA ACTA, 2021, 394
  • [5] Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective
    Guo, Weibin
    Weng, Zhangzhao
    Zhou, Chongyang
    Han, Min
    Shi, Naien
    Xie, Qingshui
    Peng, Dong-Liang
    INORGANICS, 2024, 12 (01)
  • [6] A Gradient Doping Strategy toward Superior Electrochemical Performance for Li-Rich Mn-Based Cathode Materials
    Yang, Puheng
    Zhang, Shichao
    Wei, Ziwei
    Guan, Xianggang
    Xia, Jun
    Huang, Danyang
    Xing, Yalan
    He, Jia
    Wen, Bohua
    Liu, Bin
    Xu, Huaizhe
    SMALL, 2023, 19 (20)
  • [7] Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance
    Makhonina, Elena
    Pechen, Lidia
    Medvedeva, Anna
    Politov, Yury
    Rumyantsev, Aleksander
    Koshtyal, Yury
    Volkov, Vyacheslav
    Goloveshkin, Alexander
    Eremenko, Igor
    NANOMATERIALS, 2022, 12 (01)
  • [8] Multi-dimensional correlation of layered Li-rich Mn-based cathode materials
    Yang, Zhe
    Zheng, Chaoliang
    Wei, Zhicheng
    Zhong, Jianjian
    Liu, Huirong
    Feng, Jiameng
    Li, Jianling
    Kang, Feiyu
    ENERGY MATERIALS, 2022, 2 (01):
  • [9] Modulating the local electronic structure via Al substitution to enhance the electrochemical performance of Li-rich Mn-based cathode materials
    Yu, Wenhua
    Zhao, Liuyang
    Wang, Yanyan
    Huang, Hao
    Zhang, Shuo
    Li, Hongyi
    Liu, Xinpeng
    Dong, Xufeng
    Wu, Aimin
    Li, Aikui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [10] Concentration-gradient of Li-rich Mn-based cathode materials with enhanced cycling retention
    Cheng, Lanlan
    Yang, Wenyan
    Zhang, Yifang
    Yang, Wei
    Zhou, Hanbo
    Chen, Shengzhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976