An effective second-order scheme for the nonstationary incompressible magnetohydrodynamics equations

被引:1
|
作者
Shen, Xiaojuan [1 ]
Huang, Yunqing [1 ]
Dong, Xiaojing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist Ed, Xiangtan 411105, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nonstationary incompressible MHD equations; Crank-Nicolson; Adams-Bashforth scheme; Finite element method; Stability; Convergence analysis; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES PROBLEM; CONVERGENCE ANALYSIS; ITERATIVE METHODS; STATIONARY; TIME;
D O I
10.1016/j.camwa.2022.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are proposing the Crank-Nicolson/Adams-Bashforth (CN/AB) algorithm for the nonstationary magnetohydro-dynamic (MHD) equations. For time discretization, the time derivative terms are approximated by a first-order Euler-backward scheme, an implicit second-order Crank-Nicolson scheme acting on linear terms, and an explicit Adams-Bashforth scheme dealing with nonlinear terms. We use the finite element method for spatial discretiza-tion. Theoretical studies show that the proposed algorithm is almost unconditionally stabilized with z <= C. The optimal error estimate of the algorithm is obtained by a parabolic argument mathematical trick. Finally, the theoretical results are verified by numerical experiments.
引用
收藏
页码:184 / 208
页数:25
相关论文
共 50 条