Parallel transport modeling of linear divertor simulators with fundamental ion cyclotron heating *

被引:6
|
作者
Kumar, A. [1 ]
Caneses-Marin, J. F. [1 ,2 ]
Lau, C. [1 ]
Goulding, R. [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] CompX, Del Mar, CA 92014 USA
关键词
hybrid PIC; MPEX; Proto-MPEX; Coulomb collisions; RF heating operator; plasma parallel transport; HYBRID SIMULATION; FLUID CODE; IMPLICIT; PLASMAS;
D O I
10.1088/1741-4326/acb160
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Material Plasma Exposure eXperiment (MPEX) is a steady state linear device with the goal to perform plasma material interaction studies at future fusion reactor relevant conditions. A prototype of MPEX referred as 'Proto-MPEX' is designed to carry out research and development related to source, heating and transport concepts on the planned full MPEX device. The auxiliary heating schemes in MPEX are based on cyclotron resonance heating with radio frequency (RF) waves. Ion cyclotron heating (ICH) and electron cyclotron heating in MPEX are used to independently heat the ions and electrons and provide fusion divertor conditions ranging from sheath-limited to fully detached divertor regimes at a material target. A hybrid particle-in-cell code- PICOS++ is developed and applied to understand the plasma parallel transport during ICH in MPEX/Proto-MPEX to the target. With this tool, evolution of the distribution function of MPEX/Proto-MPEX ions is modeled in the presence of (a) Coulomb collisions, (b) volumetric particle sources and (c) quasi-linear RF-based ICH. The code is benchmarked against experimental data from Proto-MPEX and simulation data from B2.5 EIRENE. The experimental observation of 'density-drop' near the target in Proto-MPEX and MPEX during ICH is demonstrated and explained via physics-based arguments using PICOS++ modeling. In fact, the density drops at the target during ICH in Proto-MPEX/MPEX to conserve the flux and to compensate for the increased flow during ICH. Furthermore, sensitivity scans of various plasma parameters with respect to ICH power are performed for MPEX to investigate its role on plasma transport and particle and energy fluxes at the target.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] ION-CYCLOTRON RESONANCE HEATING IN THE DIVERTOR TOKAMAK ASDEX
    STEINMETZ, K
    WESNER, F
    NIEDERMEYER, H
    BECKER, G
    BRAUN, F
    EBERHAGEN, A
    FUSSMANN, G
    GEHRE, O
    GERNHARDT, J
    VONGIERKE, G
    GRUBER, O
    HAAS, G
    HOFMEISTER, F
    JANESCHITZ, G
    KARGER, F
    KEILHACKER, M
    KLUBER, O
    KORNHERR, M
    LACKNER, K
    LISITANO, G
    MAYER, HM
    MCCORMICK, K
    MEISEL, D
    MERTENS, V
    MULLER, ER
    MURMANN, H
    NOTERDAEME, JM
    POSCHENRIEDER, W
    RAPP, H
    ROTH, J
    SCHMITTER, KH
    SCHNEIDER, F
    SILLER, G
    SMEULDERS, P
    SOLDNER, F
    SOLL, M
    SPETH, E
    STEUER, K
    VOLLMER, O
    WAGNER, F
    WEDLER, H
    BARTIROMO, R
    GIULIANA, A
    KISLYAKOV, A
    KOTZE, PB
    RYTER, F
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4 (03): : 1088 - 1094
  • [2] FUNDAMENTAL ION-CYCLOTRON FREQUENCY HEATING IN TOKAMAKS
    FRUCHTMAN, A
    WEITZNER, H
    PHYSICS OF FLUIDS, 1986, 29 (05) : 1620 - 1628
  • [3] Plasma heating in stellarators at the fundamental ion cyclotron frequency
    Svidzinski, VA
    Swanson, DG
    PHYSICS OF PLASMAS, 2000, 7 (02) : 609 - 614
  • [4] Plasma heating in stellarators at fundamental ion cyclotron resonance
    Svidzinski, VA
    Swanson, DG
    RADIO FREQUENCY POWER IN PLASMAS, 1999, 485 : 164 - 167
  • [5] Fundamental ion cyclotron resonance heating of JET deuterium plasmas
    Krasilnikov, A. V.
    Van Eester, D.
    Lerche, E.
    Ongena, J.
    Amosov, V. N.
    Biewer, T.
    Bonheure, G.
    Crombe, K.
    Ericsson, G.
    Esposito, B.
    Giacomelli, L.
    Hellesen, C.
    Hjalmarsson, A.
    Jachmich, S.
    Kallne, J.
    Kaschuck, Yu A.
    Kiptily, V.
    Leggate, H.
    Mailloux, J.
    Marocco, D.
    Mayoral, M-L
    Popovichev, S.
    Riva, M.
    Santala, M.
    Stamp, M.
    Vdovin, V.
    Walden, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (04)
  • [6] HEATING AND CONFINEMENT IN THE ION-CYCLOTRON RANGE OF FREQUENCIES ON THE DIVERTOR TOKAMAK ASDEX
    STEINMETZ, K
    NIEDERMEYER, H
    NOTERDAEME, JM
    WAGNER, F
    WESNER, F
    BAUMLER, J
    BECKER, G
    BECKER, W
    BOSCH, HS
    BRAMBILLA, M
    BRAUN, F
    BROCKEN, H
    DODEL, G
    EBERHAGEN, A
    FRITSCH, R
    FUSSMANN, G
    GEHRE, O
    GERNHARDT, J
    VONGIERKE, G
    GLOCK, E
    GRUBER, O
    HAAS, G
    HOFMANN, J
    HOFMEISTER, F
    HOLZHAUER, E
    IZVOZCHIKOV, AB
    JANESCHITZ, G
    KARGER, F
    KEILHACKER, M
    KISLYAKOV, A
    KLUBER, O
    KORNHERR, M
    KOTZE, PB
    LACKNER, K
    LISITANO, G
    VANMARK, E
    MAST, KF
    MAYER, HM
    MCCORMICK, K
    MEISEL, D
    MERTENS, V
    MULLER, ER
    MURMANN, HD
    NEUHAUSER, J
    PIETRZYK, ZA
    POSCHENRIEDER, W
    PURI, S
    RAPP, H
    ROTH, J
    RUDYJ, A
    NUCLEAR FUSION, 1989, 29 (02) : 277 - 294
  • [7] Plasma heating in reversed field pinches at the fundamental ion cyclotron frequency
    Svidzinski, VA
    Prager, SC
    PHYSICS OF PLASMAS, 2002, 9 (04) : 1342 - 1347
  • [8] Design specifications for the ion cyclotron heating amplifier system in the Divertor Tokamak Test facility
    Salvia, C.
    Bettini, P.
    Cardinali, A.
    Ceccuzzi, S.
    Greco, S.
    Van Eester, D.
    Zanon, F.
    FUSION ENGINEERING AND DESIGN, 2025, 215
  • [9] Ion cyclotron heating induced fast ion transport and plasma rotation in tokamaks
    Chan, VS
    Chiu, SC
    Omelchenko, YA
    RADIO FREQUENCY POWER IN PLASMAS, 2001, 595 : 385 - 389
  • [10] Study of ion cyclotron heating scenarios and fast particles generation in the divertor tokamak test facility
    Cardinali, A.
    Bolzonella, T.
    Castaldo, C.
    Ceccuzzi, S.
    Granucci, G.
    Revere, G. L.
    Tuccillo, A. A.
    Vallar, M.
    Vincenzi, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)