Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting

被引:27
|
作者
Hayat, Asif [1 ,2 ]
Sohail, Muhammad [3 ]
Ali, Hamid [4 ]
Taha, T. A. [5 ,6 ]
Qazi, H. I. A. [7 ]
Ur Rahman, Naveed [8 ]
Ajmal, Zeeshan [9 ]
Kalam, Abul [10 ,11 ]
Al-Sehemi, Abdullah G. [10 ,11 ]
Wageh, S. [12 ,13 ]
Amin, Mohammed A. [14 ]
Palamanit, Arkom [15 ]
Nawawi, W. I. [16 ]
Newair, Emad F. [17 ]
Orooji, Yasin [2 ]
机构
[1] Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Ecomat Adv Technol, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
[5] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Sakaka, Saudi Arabia
[6] Menoufia Univ, Fac Elect Engn, Phys & Engn Math Dept, Menoufia 32952, Egypt
[7] Chongqing Univ Posts & Telecommun, Coll Optoelect Engn, Chongqing 400065, Peoples R China
[8] Bacha Khan Univ Charsadda, Dept Phys, Charsadda, KP, Pakistan
[9] Northwestern Polytech Univ, Sch Chem & Chem Engn, Xian 710072, Peoples R China
[10] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[11] King Khalid Univ, Coll Sci, Dept Chem, POB 9004, Abha 61413, Saudi Arabia
[12] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia
[13] Menoufia Univ, Fac Elect Engn, Phys & Engn Math Dept, Menoufia 32952, Egypt
[14] Taif Univ, Coll Sci, Dept Chem, POB 11099, Taif 21944, Saudi Arabia
[15] Prince Songkla Univ, Fac Engn, Dept Specialized Engn, Energy Technol Program, 15 Karnjanavanich Rd, Hat Yai 90110, Thailand
[16] Univ Teknol MARA, Fac Appl Sci, Cawangan Perlis 02600, Arau Perlis, Malaysia
[17] Sohag Univ, Fac Sci, Chem Dept, Sohag 82524, Egypt
来源
CHEMICAL RECORD | 2023年 / 23卷 / 02期
关键词
Electrolysis; Evaluation Parameters; Metal-based Electrocatalysts; Overall Water Splitting; Solar Cell; etc; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; HYDROGEN EVOLUTION REACTION; PEROVSKITE SOLAR-CELL; IN-SITU FORMATION; HIGHLY-EFFICIENT; OXYGEN EVOLUTION; HIGH-PERFORMANCE; NANOSHEET ARRAYS; EARTH-ABUNDANT; ALKALINE ELECTROLYSIS;
D O I
10.1002/tcr.202200149
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H-2) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H-2 society implementation. Existing massive H-2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H-2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H-2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H-2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H-2-based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H-2 and oxygen (O-2) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
引用
下载
收藏
页数:64
相关论文
共 50 条
  • [1] Recent developments in noble metal-based hybrid electrocatalysts for overall water splitting
    Udayakumar, Anandajayarajan
    Dhandapani, Preethi
    Ramasamy, Senthilkumar
    Yan, Chao
    Angaiah, Subramania
    IONICS, 2024, 30 (01) : 61 - 84
  • [2] Transition metal-based electrocatalysts for overall water splitting
    Li, Xiao-Peng
    Huang, Can
    Han, Wen-Kai
    Ouyang, Ting
    Liu, Zhao-Qing
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2597 - 2616
  • [3] Transition metal-based electrocatalysts for overall water splitting
    Xiao-Peng Li
    Can Huang
    Wen-Kai Han
    Ting Ouyang
    Zhao-Qing Liu
    Chinese Chemical Letters, 2021, 32 (09) : 2597 - 2616
  • [4] Recent Advances Regarding Precious Metal-Based Electrocatalysts for Acidic Water Splitting
    Peng, Yuanting
    Liao, Yucong
    Ye, Donghao
    Meng, Zihan
    Wang, Rui
    Zhao, Shengqiu
    Tian, Tian
    Tang, Haolin
    NANOMATERIALS, 2022, 12 (15)
  • [5] Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives
    Lakhan, Muhammad Nazim
    Hanan, Abdul
    Hussain, Altaf
    Ali Soomro, Irfan
    Wang, Yuan
    Ahmed, Mukhtiar
    Aftab, Umair
    Sun, Hongyu
    Arandiyan, Hamidreza
    CHEMICAL COMMUNICATIONS, 2024, 60 (39) : 5104 - 5135
  • [6] Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting
    Zhang, Hao
    Luo, Yang
    Chu, Paul K.
    Liu, Qian
    Liu, Xijun
    Zhang, Shusheng
    Luo, Jun
    Wang, Xinzhong
    Hu, Guangzhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [7] Transition Metal-Based Chalcogenides as Electrocatalysts for Overall Water Splitting
    Majhi, Kartick Chandra
    Yadav, Mahendra
    ACS ENGINEERING AU, 2023, 3 (05): : 278 - 284
  • [8] Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting
    Wang, Min
    Zhang, Li
    He, Yijia
    Zhu, Hongwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (09) : 5320 - 5363
  • [9] Recent Development of Transition Metal-based Amorphous Electrocatalysts for Water Splitting
    Lu, Bowen
    Gao, Haohao
    Hua, Zile
    CHEMCATCHEM, 2024,
  • [10] Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting
    Shang, Xiao
    Tang, Jian-Hong
    Dong, Bin
    Sun, Yujie
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (07): : 3211 - 3228