Raman Spectroscopy and Machine Learning Enables Estimation of Articular Cartilage Structural, Compositional, and Functional Properties

被引:0
|
作者
Shehata, Eslam [1 ,2 ]
Nippolainen, Ervin [1 ]
Shaikh, Rubina [1 ]
Ronkainen, Ari-Petteri [2 ]
Toyras, Juha [1 ,3 ,4 ]
Sarin, Jaakko K. [1 ,5 ]
Afara, Isaac O. [1 ,4 ]
机构
[1] Univ Eastern Finland, Dept Tech Phys, Kuopio, Finland
[2] Kuopio Univ Hosp, Diagnost Imaging Ctr, Kuopio, Finland
[3] Kuopio Univ Hosp, Sci Serv Ctr, Kuopio, Finland
[4] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Australia
[5] Pirkanmaa Hospital Dist, Med Imaging Ctr, Dept Med Phys, Tampere, Finland
基金
芬兰科学院;
关键词
Osteoarthritis; Biomechanics; Raman spectroscopy; Machine learning; Classification; Regression; DEGRADATION; BIOMARKERS;
D O I
10.1007/s10439-023-03271-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
ObjectiveTo differentiate healthy from artificially degraded articular cartilage and estimate its structural, compositional, and functional properties using Raman spectroscopy (RS).DesignVisually normal bovine patellae (n = 12) were used in this study. Osteochondral plugs (n = 60) were prepared and artificially degraded either enzymatically (via Collagenase D or Trypsin) or mechanically (via impact loading or surface abrasion) to induce mild to severe cartilage damage; additionally, control plugs were prepared (n = 12). Raman spectra were acquired from the samples before and after artificial degradation. Afterwards, reference biomechanical properties, proteoglycan (PG) content, collagen orientation, and zonal (%) thickness of the samples were measured. Machine learning models (classifiers and regressors) were then developed to discriminate healthy from degraded cartilage based on their Raman spectra and to predict the aforementioned reference properties.ResultsThe classifiers accurately categorized healthy and degraded samples (accuracy = 86%), and successfully discerned moderate from severely degraded samples (accuracy = 90%). On the other hand, the regression models estimated cartilage biomechanical properties with reasonable error (& LE; 24%), with the lowest error observed in the prediction of instantaneous modulus (12%). With zonal properties, the lowest prediction errors were observed in the deep zone, i.e., PG content (14%), collagen orientation (29%), and zonal thickness (9%).ConclusionRS is capable of discriminating between healthy and damaged cartilage, and can estimate tissue properties with reasonable errors. These findings demonstrate the clinical potential of RS.
引用
收藏
页码:2301 / 2312
页数:12
相关论文
共 50 条
  • [1] Raman Spectroscopy and Machine Learning Enables Estimation of Articular Cartilage Structural, Compositional, and Functional Properties
    Eslam Shehata
    Ervin Nippolainen
    Rubina Shaikh
    Ari-Petteri Ronkainen
    Juha Töyräs
    Jaakko K. Sarin
    Isaac O. Afara
    Annals of Biomedical Engineering, 2023, 51 : 2301 - 2312
  • [2] Tissue optical properties combined with machine learning enables estimation of articular cartilage composition and functional integrity
    Kafian-Attari, Iman
    Nippolainen, Ervin
    Semenov, Dmitry
    Hauta-Kasari, Markku
    Toyras, Juha
    Afara, Isaac O.
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (11): : 6480 - 6494
  • [3] Brillouin–Raman micro-spectroscopy and machine learning techniques to classify osteoarthritic lesions in the human articular cartilage
    Martina Alunni Cardinali
    Marco Govoni
    Matilde Tschon
    Silvia Brogini
    Leonardo Vivarelli
    Assunta Morresi
    Daniele Fioretto
    Martina Rocchi
    Cesare Stagni
    Milena Fini
    Dante Dallari
    Scientific Reports, 13
  • [4] Functional and structural properties of human patellar articular cartilage in osteoarthritis
    Nissinen, Mikko T.
    Hanninen, Nina
    Prakash, Mithilesh
    Makela, Janne T. A.
    Nissi, Mikko J.
    Toyras, Juha
    Nieminen, Miika T.
    Korhonen, Rami K.
    Tanska, Petri
    JOURNAL OF BIOMECHANICS, 2021, 126
  • [5] Brillouin-Raman micro-spectroscopy and machine learning techniques to classify osteoarthritic lesions in the human articular cartilage
    Alunni Cardinali, Martina
    Govoni, Marco
    Tschon, Matilde
    Brogini, Silvia
    Vivarelli, Leonardo
    Morresi, Assunta
    Fioretto, Daniele
    Rocchi, Martina
    Stagni, Cesare
    Fini, Milena
    Dallari, Dante
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
    Afara, Isaac O.
    Sarin, Jaakko K.
    Ojanen, Simo
    Finnila, Mikko A. J.
    Herzog, Walter
    Saarakkala, Simo
    Korhonen, Rami K.
    Toyras, Juha
    CELLULAR AND MOLECULAR BIOENGINEERING, 2020, 13 (03) : 219 - 228
  • [7] Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
    Isaac O. Afara
    Jaakko K. Sarin
    Simo Ojanen
    Mikko A. J. Finnilä
    Walter Herzog
    Simo Saarakkala
    Rami K. Korhonen
    Juha Töyräs
    Cellular and Molecular Bioengineering, 2020, 13 : 219 - 228
  • [8] Articular Cartilage Optical Clearing Research by Raman Spectroscopy
    Gao Hao
    Zhai Ming-yang
    Shang Lin-wei
    Zhao Yuan
    Xu Hao
    Wang Xiao
    Yin Jian-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (08) : 2425 - 2429
  • [9] Functional properties articular cartilage of native
    Ateshian, GA
    Hung, CT
    FUNCTIONAL TISSUE ENGINEERING, 2003, : 46 - 68
  • [10] THE EFFECT OF IN VIVO CHONDROCYTE DEPLETION ON THE STRUCTURAL AND FUNCTIONAL PROPERTIES OF MURINE ARTICULAR CARTILAGE
    Masson, A. O.
    Corpuz, J. M.
    Edwards, W. B.
    Krawetz, R. J.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S80 - S80