Effective implementation of nonadiabatic geometric quantum gates of cat-state qubits using an auxiliary qutrit

被引:12
|
作者
Kang, Yi-Hao [1 ,2 ]
Xiao, Yang [2 ,3 ]
Shi, Zhi-Cheng [2 ,3 ]
Wang, Yu [4 ]
Yang, Jian-Qun [5 ]
Song, Jie [1 ]
Xia, Yan [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350108, Peoples R China
[3] Fuzhou Univ, Dept Phys, Fuzhou 350108, Peoples R China
[4] Hangzhou Normal Univ, Sch Phys, Hangzhou 311121, Peoples R China
[5] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 03期
基金
中国国家自然科学基金;
关键词
nonadiabatic geometric quantum computation; reverse engineering; cat state; ERROR-CORRECTION; ALGORITHMS; LIGHT;
D O I
10.1088/1367-2630/acc2de
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an effective protocol for the implementation of nonadiabatic geometric quantum gates of cat-state qubits in Kerr-nonlinear resonators driven by two-photon squeezing drives. Coupling the Kerr-nonlinear resonators with an auxiliary qutrit with proper coupling strengths, the selective transition of the auxiliary qutrit is realized. The selective transition can be exploited in the implementation of a set of useful quantum gates, including the phase gates, the NOT gates, the controlled-phase gates, the controlled NOT gates, and the Toffoli gates. Numerical simulations show the implementations of different types of gates are robust against systematic errors, random noise, and decoherence. Therefore, the protocol may be helpful for robust and scalable quantum computation based on cat-state qubits.
引用
收藏
页数:27
相关论文
共 24 条
  • [1] Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering
    Kang, Yi-Hao
    Chen, Ye-Hong
    Wang, Xin
    Song, Jie
    Xia, Yan
    Miranowicz, Adam
    Zheng, Shi-Biao
    Nori, Franco
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [2] Fault-Tolerant Multiqubit Geometric Entangling Gates Using Photonic Cat-State Qubits
    Chen, Ye -Hong
    Stassi, Roberto
    Qin, Wei
    Miranowicz, Adam
    Nori, Franco
    PHYSICAL REVIEW APPLIED, 2022, 18 (02)
  • [3] Nonadiabatic geometric quantum gates by composite pulses based on superconducting qubits
    Fang, Zi-Yu
    Xu, Hai
    Chen, Tao
    Wei, Kejin
    Zhang, Chengxian
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [4] State-Independent Nonadiabatic Geometric Quantum Gates
    Liang, Yan
    Shen, Pu
    Ji, Li-Na
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2023, 19 (02)
  • [5] Implementation of universal quantum gates based on nonadiabatic geometric phases
    Zhu, SL
    Wang, ZD
    PHYSICAL REVIEW LETTERS, 2002, 89 (09)
  • [6] Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit
    Xu, Y.
    Hua, Z.
    Chen, Tao
    Pan, X.
    Li, X.
    Han, J.
    Cai, W.
    Ma, Y.
    Wang, H.
    Song, Y. P.
    Xue, Zheng-Yuan
    Sun, L.
    PHYSICAL REVIEW LETTERS, 2020, 124 (23)
  • [7] Implementation of Geometric Quantum Gates on Microwave-Driven Semiconductor Charge Qubits
    Zhang, Chengxian
    Chen, Tao
    Wang, Xin
    Xue, Zheng-Yuan
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (08)
  • [8] State-Independent Geometric Quantum Gates via Nonadiabatic and Noncyclic Evolution
    Chen, Yue
    Ji, Li-Na
    Xue, Zheng-Yuan
    Liang, Yan
    ANNALEN DER PHYSIK, 2023, 535 (12)
  • [9] Error-tolerant parity detector of cat-state qubits based on a topological quantum phase transition
    Kang, Yi-Hao
    Wang, Yu
    Su, Qi-Ping
    Zhang, Guo-Qiang
    Feng, Wei
    Yang, Chui-Ping
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [10] Implementation of universal quantum gates based on nonadiabatic geometric phases (vol 89, art no 097902, 2002)
    Zhu, SL
    Wang, ZD
    PHYSICAL REVIEW LETTERS, 2002, 89 (28)