Gamma-Nabla Hardy-Hilbert-Type Inequalities on Time Scales

被引:2
|
作者
Almarri, Barakah [1 ]
El-Deeb, Ahmed A. [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
Hardy-Hilbert's inequality; dynamic inequality; time scales; conformable fractional nabla calculus; INTEGRAL-INEQUALITIES;
D O I
10.3390/axioms12050449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigated several novel conformable fractional gamma-nabla dynamic Hardy-Hilbert inequalities on time scales in this study. Several continuous inequalities and their corresponding discrete analogues in the literature are combined and expanded by these inequalities. Holder's inequality on time scales and a few algebraic inequalities are used to demonstrate our findings.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] (γ,a)-Nabla Reverse Hardy-Hilbert-Type Inequalities on Time Scales
    El-Deeb, Ahmed A.
    Baleanu, Dumitru
    Awrejcewicz, Jan
    SYMMETRY-BASEL, 2022, 14 (08):
  • [2] Novel Fractional Dynamic Hardy-Hilbert-Type Inequalities on Time Scales with Applications
    El-Deeb, Ahmed A.
    Awrejcewicz, Jan
    MATHEMATICS, 2021, 9 (22)
  • [3] Important Study on the backward difference Dynamic Hardy-Hilbert-Type Inequalities on Time Scales with Applications
    El-Deeb, Ahmed A.
    Bazighifan, Omar
    Cesarano, Clemente
    SYMMETRY-BASEL, 2022, 14 (02):
  • [4] On Hardy-Hilbert-type inequalities with α-fractional derivatives
    Ahmed, Marwa M.
    Hassanein, Wael S.
    Elsayed, Marwa Sh.
    Baleanu, Dumitru
    El-Deeb, Ahmed A.
    AIMS MATHEMATICS, 2023, 8 (09): : 22097 - 22111
  • [5] Some new Hardy-Hilbert-type inequalities with multiparameters
    Yang, Limin
    Yang, Ruiyun
    AIMS MATHEMATICS, 2022, 7 (01): : 840 - 854
  • [6] Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus
    Zakarya, Mohammed
    AlNemer, Ghada
    Saied, Ahmed, I
    Butush, Roqia
    Bazighifan, Omar
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [7] On Some Important Dynamic Inequalities of Hardy-Hilbert-Type on Timescales
    El-Deeb, Ahmed A.
    Baleanu, Dumitru
    Cesarano, Clemente
    Abdeldaim, Ahmed
    SYMMETRY-BASEL, 2022, 14 (07):
  • [8] On nabla conformable fractional Hardy-type inequalities on arbitrary time scales
    Ahmed A. El-Deeb
    Samer D. Makharesh
    Eze R. Nwaeze
    Olaniyi S. Iyiola
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [9] On nabla conformable fractional Hardy-type inequalities on arbitrary time scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Nwaeze, Eze R.
    Iyiola, Olaniyi S.
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [10] PARAMETERIZED MORE ACCURATE HARDY-HILBERT-TYPE INEQUALITIES AND APPLICATIONS
    Hong, Yong
    Zhong, Yanru
    Yang, Bicheng
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1241 - 1258