Global patterns of tree wood density

被引:9
|
作者
Yang, Hui [1 ]
Wang, Siyuan [1 ,2 ]
Son, Rackhun [1 ,3 ]
Lee, Hoontaek [1 ,2 ]
Benson, Vitus [1 ,4 ]
Zhang, Weijie [1 ]
Zhang, Yahai [5 ]
Zhang, Yuzhen [1 ]
Kattge, Jens [1 ,6 ]
Boenisch, Gerhard [1 ]
Schepaschenko, Dmitry [7 ]
Karaszewski, Zbigniew [8 ]
Sterenczak, Krzysztof [9 ]
Moreno-Martinez, Alvaro [10 ]
Nabais, Cristina [11 ]
Birnbaum, Philippe [12 ,13 ]
Vieilledent, Ghislain [12 ]
Weber, Ulrich [1 ]
Carvalhais, Nuno [1 ,4 ,14 ]
机构
[1] Max Planck Inst Biogeochem, Jena, Germany
[2] Tech Univ Dresden, Inst Photogrammetry & Remote Sensing, Dresden, Germany
[3] Pukyong Natl Univ, Dept Environm Atmospher Sci, Busan, South Korea
[4] ELLIS Unit Jena, Jena, Germany
[5] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[6] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
[7] Int Inst Appl Syst Anal IIASA, Laxenburg, Austria
[8] Lukasiewicz Res Network, Ctr Sustainable Econ, Res Grp Chem Technol & Environm Protect, Poznan Inst Technol, Poznan, Poland
[9] Forest Res Inst, Dept Geomat, Raszyn, Poland
[10] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
[11] Univ Coimbra, Ctr Funct Ecol, Dept Life Sci, Associate Lab TERRA, Coimbra, Portugal
[12] Univ Montpellier, INRAE, CNRS, CIRAD,IRD,AMAP, Montpellier, France
[13] Inst Agron Neo Caledonien IAC, Noumea, New Caledonia
[14] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Ciencias & Engn Ambiente, DCEA,FCT, Caparica, Portugal
基金
欧盟地平线“2020”;
关键词
carbon stocks; climate stresses; machine learning; plant traits; tree physiology; vegetation resilience; PLANT TRAIT DATABASE; CLIMATE; GROWTH; BIOMASS; FORESTS; AGE;
D O I
10.1111/gcb.17224
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Wood density is a fundamental property related to tree biomechanics and hydraulic function while playing a crucial role in assessing vegetation carbon stocks by linking volumetric retrieval and a mass estimate. This study provides a high-resolution map of the global distribution of tree wood density at the 0.01 degrees (similar to 1 km) spatial resolution, derived from four decision trees machine learning models using a global database of 28,822 tree-level wood density measurements. An ensemble of four top-performing models combined with eight cross-validation strategies shows great consistency, providing wood density patterns with pronounced spatial heterogeneity. The global pattern shows lower wood density values in northern and northwestern Europe, Canadian forest regions and slightly higher values in Siberia forests, western United States, and southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high wood density. Climatic predictors explain 49%-63% of spatial variations, followed by vegetation characteristics (25%-31%) and edaphic properties (11%-16%). Notably, leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) are the most dominant individual features among all selected predictive covariates. Wood density tends to be higher for angiosperm broadleaf trees compared to gymnosperm needleleaf trees, particularly for evergreen species. The distributions of wood density categorized by leaf types and leaf habit types have good agreement with the features observed in wood density measurements. This global map quantifying wood density distribution can help improve accurate predictions of forest carbon stocks, providing deeper insights into ecosystem functioning and carbon cycling such as forest vulnerability to hydraulic and thermal stresses in the context of future climate change.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ANGIOSPERM WOOD STRUCTURE: GLOBAL PATTERNS IN VESSEL ANATOMY AND THEIR RELATION TO WOOD DENSITY AND POTENTIAL CONDUCTIVITY
    Zanne, Amy E.
    Westoby, Mark
    Falster, Daniel S.
    Ackerly, David D.
    Loarie, Scott R.
    Arnold, Sarah E. J.
    Coomes, David A.
    AMERICAN JOURNAL OF BOTANY, 2010, 97 (02) : 207 - 215
  • [2] Global patterns of tree stem growth and stand aboveground wood production in mangrove forests
    Xiong, Yanmei
    Cakir, Roxelane
    Phan, Sang Minh
    Ola, Anne
    Krauss, Ken W.
    Lovelock, Catherine E.
    FOREST ECOLOGY AND MANAGEMENT, 2019, 444 : 382 - 392
  • [3] New formula and conversion factor to compute basic wood density of tree species using a global wood technology database
    Vieilledent, Ghislain
    Fischer, Fabian Jorg
    Chave, Jerome
    Guibal, Daniel
    Langbour, Patrick
    Gerard, Jean
    AMERICAN JOURNAL OF BOTANY, 2018, 105 (10) : 1653 - 1661
  • [4] Mapping tree density at a global scale
    Crowther, T. W.
    Glick, H. B.
    Covey, K. R.
    Bettigole, C.
    Maynard, D. S.
    Thomas, S. M.
    Smith, J. R.
    Hintler, G.
    Duguid, M. C.
    Amatulli, G.
    Tuanmu, M. -N.
    Jetz, W.
    Salas, C.
    Stam, C.
    Piotto, D.
    Tavani, R.
    Green, S.
    Bruce, G.
    Williams, S. J.
    Wiser, S. K.
    Huber, M. O.
    Hengeveld, G. M.
    Nabuurs, G. -J.
    Tikhonova, E.
    Borchardt, P.
    Li, C. -F.
    Powrie, L. W.
    Fischer, M.
    Hemp, A.
    Homeier, J.
    Cho, P.
    Vibrans, A. C.
    Umunay, P. M.
    Piao, S. L.
    Rowe, C. W.
    Ashton, M. S.
    Crane, P. R.
    Bradford, M. A.
    NATURE, 2015, 525 (7568) : 201 - +
  • [5] Mapping tree density at a global scale
    T. W. Crowther
    H. B. Glick
    K. R. Covey
    C. Bettigole
    D. S. Maynard
    S. M. Thomas
    J. R. Smith
    G. Hintler
    M. C. Duguid
    G. Amatulli
    M.-N. Tuanmu
    W. Jetz
    C. Salas
    C. Stam
    D. Piotto
    R. Tavani
    S. Green
    G. Bruce
    S. J. Williams
    S. K. Wiser
    M. O. Huber
    G. M. Hengeveld
    G.-J. Nabuurs
    E. Tikhonova
    P. Borchardt
    C.-F. Li
    L. W. Powrie
    M. Fischer
    A. Hemp
    J. Homeier
    P. Cho
    A. C. Vibrans
    P. M. Umunay
    S. L. Piao
    C. W. Rowe
    M. S. Ashton
    P. R. Crane
    M. A. Bradford
    Nature, 2015, 525 : 201 - 205
  • [6] Global patterns of tree density are contingent upon local determinants in the world’s natural forests
    Jaime Madrigal-González
    Joaquín Calatayud
    Juan A. Ballesteros-Cánovas
    Adrián Escudero
    Luis Cayuela
    Laura Marqués
    Marta Rueda
    Paloma Ruiz-Benito
    Asier Herrero
    Cristina Aponte
    Rodrigo Sagardia
    Andrew J. Plumptre
    Sylvain Dupire
    Carlos I. Espinosa
    Olga V. Tutubalina
    Moe Myint
    Luciano Pataro
    Jerome López-Sáez
    Manuel J. Macía
    Meinrad Abegg
    Miguel A. Zavala
    Adolfo Quesada-Román
    Mauricio Vega-Araya
    Elena Golubeva
    Yuliya Timokhina
    Guillermo Bañares de Dios
    Íñigo Granzow-de la Cerda
    Markus Stoffel
    Communications Biology, 6
  • [7] Global patterns of tree density are contingent upon local determinants in the world's natural forests
    Madrigal-Gonzalez, Jaime
    Calatayud, Joaquin
    Ballesteros-Canovas, Juan A.
    Escudero, Adrian
    Cayuela, Luis
    Marques, Laura
    Rueda, Marta
    Ruiz-Benito, Paloma
    Herrero, Asier
    Aponte, Cristina
    Sagardia, Rodrigo
    Plumptre, Andrew J.
    Dupire, Sylvain
    Espinosa, Carlos I.
    Tutubalina, Olga V.
    Myint, Moe
    Pataro, Luciano
    Lopez-Saez, Jerome
    Macia, Manuel J.
    Abegg, Meinrad
    Zavala, Miguel A.
    Quesada-Roman, Adolfo
    Vega-Araya, Mauricio
    Golubeva, Elena
    Timokhina, Yuliya
    de Dios, Guillermo Banares
    Granzow-de la Cerda, Inigo
    Stoffel, Markus
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [8] To see the wood for the trees: Mining frequent tree patterns
    Bringmann, B
    CONSTRAINT-BASED MINING AND INDUCTIVE DATABASES, 2004, 3848 : 38 - 63
  • [9] Wood Density and Carbon Concentration Jointly Drive Wood Carbon Density of Five Rosaceae Tree Species
    Guo, Pingping
    Zhao, Xiping
    Wang, Xingchang
    Feng, Qi
    Li, Xinjing
    Tan, Yangyang
    FORESTS, 2024, 15 (07):
  • [10] A NEW METHOD FOR DETERMINING WOOD DENSITY IN THE STANDING TREE
    NICHOLLS, JWP
    AUSTRALIAN FOREST RESEARCH, 1985, 15 (02): : 195 - 206