Flow-induced periodic chiral structures in an achiral nematic liquid crystal

被引:7
|
作者
Zhang, Qing [1 ]
Wang, Weiqiang [2 ]
Zhou, Shuang [3 ]
Zhang, Rui [2 ]
Bischofberger, Irmgard [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
[3] Univ Massachusetts Amherst, Dept Phys, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
SYMMETRY-BREAKING; SADDLE-SPLAY; CONFINEMENT; ELASTICITY; VISCOSITY; DYNAMICS; DROPLETS; DOMAINS;
D O I
10.1038/s41467-023-43978-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Supramolecular chirality typically originates from either chiral molecular building blocks or external chiral stimuli. Generating chirality in achiral systems in the absence of a chiral input, however, is non-trivial and necessitates spontaneous mirror symmetry breaking. Achiral nematic lyotropic chromonic liquid crystals have been reported to break mirror symmetry under strong surface or geometric constraints. Here we describe a previously unrecognised mechanism for creating chiral structures by subjecting the material to a pressure-driven flow in a microfluidic cell. The chirality arises from a periodic double-twist configuration of the liquid crystal and manifests as a striking stripe pattern. We show that the mirror symmetry breaking is triggered at regions of flow-induced biaxial-splay configurations of the director field, which are unstable to small perturbations and evolve into lower energy structures. The simplicity of this unique pathway to mirror symmetry breaking can shed light on the requirements for forming macroscopic chiral structures. Under strong surface or geometric constraints, achiral nematic liquid crystals can form chiral structures. Using pressure driven flow, Zhang et al. show a pathway to mirror symmetry breaking that does not require such constraints and that occurs in nematic lyotropic chromonic liquid crystals.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Flow-induced periodic chiral structures in an achiral nematic liquid crystal
    Qing Zhang
    Weiqiang Wang
    Shuang Zhou
    Rui Zhang
    Irmgard Bischofberger
    Nature Communications, 15
  • [2] Periodic-shear-induced vortex structures in nematic liquid crystal
    Chuvyrov, AN
    Skaldin, OA
    CRYSTALLOGRAPHY REPORTS, 2001, 46 (01) : 114 - 117
  • [3] Periodic-shear induced vortex structures in nematic liquid crystal
    Chuvyrov, A.N.
    Scaldin, O.A.
    Kristallografiya, 2001, 46 (01): : 124 - 128
  • [4] Periodic-shear-induced vortex structures in nematic liquid crystal
    A. N. Chuvyrov
    O. A. Skaldin
    Crystallography Reports, 2001, 46 : 114 - 117
  • [5] Coexistence of nematic and chiral nematic phases of an achiral liquid crystal trimer possessing an octafluorobiphenyl unit
    Yoshizawa, Atsushi
    Kato, Hirona
    LIQUID CRYSTALS, 2018, 45 (10) : 1443 - 1450
  • [6] Chiral and achiral crystal structures
    Flack, HD
    HELVETICA CHIMICA ACTA, 2003, 86 (04) : 905 - 921
  • [7] Effect of Flow-Induced Nematic Order on Polyethylene Crystal Nucleation
    Zhang, Wenlin
    Larson, Ronald G.
    MACROMOLECULES, 2020, 53 (18) : 7650 - 7657
  • [8] Radial molecular orientation using a flow-induced aligning method in a nematic liquid crystal cell
    Masuda, Shin
    Nose, Toshiaki
    Yamaguchi, Rumiko
    Sato, Susumu
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1995, 34 (8 A): : 4129 - 4132
  • [9] Spontaneous chiral transition of a polymer-stabilised achiral nematic liquid crystal with cylindrical geometry
    Kim, Kwang-Nyun
    Yoon, Tae-Hoon
    Lee, Ji-Hoon
    LIQUID CRYSTALS, 2011, 38 (09) : 1111 - 1116
  • [10] Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers
    Chen, Dong
    Porada, Jan H.
    Hooper, Justin B.
    Klittnick, Arthur
    Shen, Yongqiang
    Tuchband, Michael R.
    Korblova, Eva
    Bedrov, Dmitry
    Walba, David M.
    Glaser, Matthew A.
    Maclennan, Joseph E.
    Clark, Noel A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (40) : 15931 - 15936