Machine learning-based defect prediction model using multilayer perceptron algorithm for escalating the reliability of the software

被引:1
|
作者
Juneja, Sapna [1 ]
Nauman, Ali [2 ]
Uppal, Mudita [3 ]
Gupta, Deepali [3 ]
Alroobaea, Roobaea [4 ]
Muminov, Bahodir [5 ]
Tao, Yuning [6 ]
机构
[1] KIET Grp Inst, Ghaziabad, India
[2] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan, South Korea
[3] Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India
[4] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, Taif 21944, Saudi Arabia
[5] Tashkent State Univ Econ, Dept Artificial Intelligence, Tashkent 100066, Uzbekistan
[6] South China Univ Technol, Sch Elect Power, Guangzhou, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 07期
关键词
Machine learning; Confusion matrix; Gaussian Naive Bayes; Decision tree; Multilayer perceptron; Software defect; NEURAL-NETWORKS; COMPLEXITY; BPN;
D O I
10.1007/s11227-023-05836-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
When it comes to software development, precise planning, proper documentation and proper process control, some errors are inevitable in the software environment. These software flaws can lead to quality deterioration, which can be the main reason behind system failure. As the whole world especially developing countries is dependent upon software systems, it is very important to focus on its reliability aspect. Nowadays sophisticated systems require concerted efforts for managing and reducing the shortcomings in software engineering. But, these efforts require more cost, more money and more time. Software error prediction is the most helpful step in the testing stage of the software development life cycle. It identifies components or parts of the code where an error may occur and requires broad testing, so the test resources can be efficiently used. Software error assessment reduces efforts of testing the software by helping the software testers locate the actual problem and classify different classes of errors in the system. Error estimators are majorly used in various organizations to evaluate the software to save time, improve the quality of software and testing and optimize resources to meet timelines. Machine learning provides support in fault projection by collecting the training data from various edge devices and thus helps in escalating the reliability of the software available on Kaggle. The multilayer perceptron shows better results in precision, recall, F1 score and accuracy as compared to decision tree and Gaussian Naive Bayes as it achieves an accuracy of 96.8%.
引用
收藏
页码:10122 / 10147
页数:26
相关论文
共 50 条
  • [1] Machine learning-based defect prediction model using multilayer perceptron algorithm for escalating the reliability of the software
    Sapna Juneja
    Ali Nauman
    Mudita Uppal
    Deepali Gupta
    Roobaea Alroobaea
    Bahodir Muminov
    Yuning Tao
    [J]. The Journal of Supercomputing, 2024, 80 : 10122 - 10147
  • [2] On Software Defect Prediction Using Machine Learning
    Ren, Jinsheng
    Qin, Ke
    Ma, Ying
    Luo, Guangchun
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] A machine learning-based reliability assessment model for critical software systems
    Challagulla, Venkata U. B.
    Bastani, Farokh B.
    Paul, Raymond A.
    Tsai, Wei-Tek
    Chen, Yinong
    [J]. COMPSAC 2007: THE THIRTY-FIRST ANNUAL INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, VOL I, PROCEEDINGS, 2007, : 79 - +
  • [4] Software Defect Prediction Model Based on the Combination of Machine Learning Algorithms
    Fu, Yiqi
    Dong, Wei
    Yin, Liangze
    Du, Yuqing
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2017, 54 (03): : 633 - 641
  • [5] A Systematic Study for Learning-Based Software Defect Prediction
    Cao, Han
    [J]. 2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
  • [6] Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    [J]. SENSORS, 2022, 22 (07)
  • [7] An Empirical Study for Enhanced Software Defect Prediction Using a Learning-Based Framework
    Kamal Bashir
    Tianrui Li
    Chubato Wondaferaw Yohannese
    [J]. International Journal of Computational Intelligence Systems, 2018, 12 : 282 - 298
  • [8] An Empirical Study for Enhanced Software Defect Prediction Using a Learning-Based Framework
    Bashir, Kamal
    Li, Tianrui
    Yohannese, Chubato Wondaferaw
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 282 - 298
  • [9] An improved approach to software defect prediction using a hybrid machine learning model
    Miholca, Diana-Lucia
    [J]. 2018 20TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2018), 2019, : 443 - 448
  • [10] Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS
    Nosratabadi, Saeed
    Ardabili, Sina
    Lakner, Zoltan
    Mako, Csaba
    Mosavi, Amir
    [J]. AGRICULTURE-BASEL, 2021, 11 (05):