MSA-Net: Multi-scale attention network for image splicing localization

被引:0
|
作者
Yan, Caiping [1 ]
Wei, Huajian [1 ]
Lan, Zhi [1 ]
Li, Hong [2 ]
机构
[1] Hangzhou Normal Univ, Dept Comp Sci, Hangzhou 311121, Peoples R China
[2] Hangzhou InsVis Technol Co Ltd, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Image forensics; Spatial-channel relationships; Multi-scale; Self-attention; Image splicing localization; FORGERY;
D O I
10.1007/s11042-023-16131-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the novel Multi-Scale Attention Network (MSA-Net) to address the challenge of locating diverse types and sizes of splicing forgery objects. Previous methods neglect crucial characteristics of global dependencies and size, resulting in imprecise localization on background tampering and small target tampering. To overcome this, we integrate a multi-scale self-attention mechanism to capture global dependencies and fully understand the relationships between spliced objects and untampered areas. Our approach involves inserting multi-scale attention modules that combine the position attention and channel attention modules between convolution layers for feature extraction. The position attention module emphasizes spatial interdependencies, capturing relationships between feature positions. Similarly, the channel attention module captures relationships between channel features. This allows for the preservation of intrinsic details while capturing long-range semantic dependencies, which is beneficial to the detection of splicing forgery objects. Meanwhile, by dividing the feature maps into multiple sub-regions or sub-channels, our attention modules can better preserve the details while capturing long-range semantic information dependencies. Experimental results show that the proposed MSA-Net outperforms several state-of-the-art algorithms with an F1-score of 60.5% and an IOU value of 58.8% on the CASIA dataset.
引用
收藏
页码:20587 / 20604
页数:18
相关论文
共 50 条
  • [1] MSA-Net: Multi-scale attention network for image splicing localization
    Caiping Yan
    Huajian Wei
    Zhi Lan
    Hong Li
    [J]. Multimedia Tools and Applications, 2024, 83 : 20587 - 20604
  • [2] MSA-Net: Multi-scale feature fusion network with enhanced attention module for 3D medical image segmentation
    Wang, Shuo
    Wang, Yuanhong
    Peng, Yanjun
    Chen, Xue
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [3] MSA-Net: Multiscale spatial attention network for medical image segmentation
    Fu, Zhaojin
    Li, Jinjiang
    Hua, Zhen
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 70 : 453 - 473
  • [4] MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network
    Zheng, Linxin
    Xiao, Guobao
    Shi, Ziwei
    Wang, Shiping
    Ma, Jiayi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4598 - 4608
  • [5] Fusing Multi-scale Attention and Transformer for Detection and Localization of Image Splicing Forgery
    Xu, Yanzhi
    Zheng, Jiangbin
    Shao, Chenyu
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2023, 2024, 14374 : 335 - 344
  • [6] MSA-Net: Multiscale Spatial Attention Network for the Classification of Breast Histology Images
    Yang, Zhanbo
    Ran, Lingyan
    Xia, Yong
    Zhang, Yanning
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 273 - 282
  • [7] Multi-scale attention context-aware network for detection and localization of image splicing Efficient and robust identification network
    Ren, Ruyong
    Niu, Shaozhang
    Jin, Junfeng
    Zhang, Jiwei
    Ren, Hua
    Zhao, Xiaojie
    [J]. APPLIED INTELLIGENCE, 2023, 53 (15) : 18219 - 18238
  • [8] MSU-Net: the multi-scale supervised U-Net for image splicing forgery localization
    Yu, Hao
    Su, Lichao
    Dai, Chenwei
    Wang, Jinli
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (03)
  • [9] Multi-Scale Attention Network for Image Cropping
    Lian, Tianpei
    Xian, Ke
    Pan, Zhiyu
    Hong, Chaoyi
    Cao, Zhiguo
    Zhong, Weicai
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2640 - 2645
  • [10] Multi-scale attention network for image inpainting
    Qin, Jia
    Bai, Huihui
    Zhao, Yao
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 204