Evolution Model of Coal Failure Using Energy Dissipation under Cyclic Loading/Unloading

被引:3
|
作者
Wang, Chunlai [1 ]
Zuo, Chang [1 ]
Zhao, Ze [1 ]
机构
[1] China Univ Min & Technol, Sch Energy & Min Engn, Beijing 100083, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
coal failure; uniaxial cyclic loading/unloading test; energy dissipation; energy evolution; DAMAGE MODEL; STRAIN-ENERGY; ROCK; BEHAVIOR; DEFORMATION; SANDSTONE; STRENGTH; GRANITE; RELEASE; CRACK;
D O I
10.3390/app13095797
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The damage and fracture of coal is accompanied by a complex energy conversion process, and these different stages of energy evolution are closely related to coal failure. In this paper, an evolution model describing the behavior of coal failure was proposed using the energy dissipation under cyclic loading/unloading. The energy growth pattern and energy consumption characteristics of the coal fracture were analyzed under cyclic loading/unloading. An evolution model of the energy behavior of coal fracture was established. The damage variables of energy dissipation were defined, and a theoretical model was established. The parameters included the relationship between the energy state, damage state, and strength state according to the uniaxial cyclic loading/unloading test. The results show that there are energy excitation and inhibition effects in the process of coal fracture; that is, the accumulation rate and level of energy are affected by the energy storage state, and the energy storage rate changes in the mode of "low promotion and high inhibition". The abrupt increase in dissipated energy can be regarded as the precursor of coal fracture. Based on the analysis of the characteristics of the damage and failure state and dissipated energy, the discriminant equation for the stability of the coal energy state was constructed; it is a meaningful discovery for predicting and evaluating coal failure.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Energy Behaviour of Coal Failure under Uniaxial Cyclic Loading/Unloading
    Wang, Chunlai
    Zhao, Ze
    Zuo, Chang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [2] Energy Dissipation and Damage Evolution Characteristics of Shale under Triaxial Cyclic Loading and Unloading
    Li, Ziyun
    Xie, Song
    Song, Qianghui
    Wang, Peiyong
    Liu, Dongyan
    Zhao, Baoyun
    Huang, Wei
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [3] Study on mechanical properties and energy evolution of deep unloading coal under cyclic loading
    Wang, Lei
    Zou, Peng
    Fan, Hao
    Xie, Guangxiang
    Jin, Kang
    Zhong, Hao
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2024, 43 (10): : 2341 - 2355
  • [4] Mechanical Properties and Energy Damage Evolution Characteristics of Coal Under Cyclic Loading and Unloading
    Ding, Z. W.
    Jia, J. D.
    Tang, Q. B.
    Li, X. F.
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (08) : 4765 - 4781
  • [5] Mechanical Properties and Energy Damage Evolution Characteristics of Coal Under Cyclic Loading and Unloading
    Z. W. Ding
    J. D. Jia
    Q. B. Tang
    X. F. Li
    Rock Mechanics and Rock Engineering, 2022, 55 : 4765 - 4781
  • [6] Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading
    Li Xin-wei
    Yao Zhi-shu
    Huang Xian-wen
    Liu Zhi-xi
    Zhao Xiang
    Mu Ke-han
    ROCK AND SOIL MECHANICS, 2021, 42 (06) : 1693 - 1704
  • [7] Energy Dissipation and Damage Evolution Characteristics of Salt Rock under Uniaxial Cyclic Loading and Unloading Tension
    Zhu, Anqi
    Liu, Jianfeng
    Wu, Zhide
    Wang, Lu
    Liu, Hejuan
    Xiao, Fukun
    Deng, Chaofu
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [8] Mechanical characteristics and energy dissipation evolution of coal under triaxial unloading
    Lu X.
    Ji H.
    Yu X.
    Jiang H.
    Gao Y.
    Wu H.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (02): : 90 - 98
  • [9] Effect of water on the damage and energy dissipation feature of coal under uniaxial cyclic loading-unloading condition
    Song, Honghua
    Zhao, Yixin
    Wu, Yang
    Li, Xuehao
    Gong, Zhixin
    Sun, Zhuang
    Jiang, Yaodong
    Guo, Zihan
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (11) : 4092 - 4107
  • [10] Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading
    Miao S.
    Liu Z.
    Zhao X.
    Huang Z.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (05): : 928 - 938