Effect of case and control definitions on genome-wide association study (GWAS) findings

被引:3
|
作者
Isgut, Monica [1 ]
Song, Kijoung [2 ]
Ehm, Margaret G. [2 ]
Wang, May Dongmei [3 ]
Davitte, Jonathan [2 ,4 ]
机构
[1] Georgia Inst Technol, Dept Bioinformat, Atlanta, GA USA
[2] GlaxoSmithKline, Dept Human Genet, Collegeville, PA USA
[3] Emory Univ, Georgia Inst Technol, Sch Biomed Engn, Atlanta, GA USA
[4] GlaxoSmithKline, Dept Human Genet, Collegeville, PA 19426 USA
关键词
genetic correlation; GWAS; selection bias; study design; UK Biobank; BIOBANK;
D O I
10.1002/gepi.22523
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWAS) have significantly advanced our understanding of the genetic underpinnings of diseases, but case and control cohort definitions for a given disease can vary between different published studies. For example, two GWAS for the same disease using the UK Biobank data set might use different data sources (i.e., self-reported questionnaires, hospital records, etc.) or different levels of granularity (i.e., specificity of inclusion criteria) to define cases and controls. The extent to which this variability in cohort definitions impacts the end-results of a GWAS study is unclear. In this study, we systematically evaluated the effect of the data sources used for case and control definitions on GWAS findings. Using the UK Biobank, we selected three diseases-glaucoma, migraine, and iron-deficiency anemia. For each disease, we designed 13 GWAS, each using different combinations of data sources to define cases and controls, and then calculated the pairwise genetic correlations between all GWAS for each disease. We found that the data sources used to define cases for a given disease can have a significant impact on GWAS end-results, but the extent of this depends heavily on the disease in question. This suggests the need for greater scrutiny on how case cohorts are defined for GWAS.
引用
收藏
页码:394 / 406
页数:13
相关论文
共 50 条
  • [1] A Genome-Wide Association Study (GWAS) for Bronchopulmonary Dysplasia
    Wang, Hui
    St Julien, Krystal R.
    Stevenson, David K.
    Hoffmann, Thomas J.
    Witte, John S.
    Lazzeroni, Laura C.
    Krasnow, Mark A.
    Quaintance, Cecele C.
    Oehlert, John W.
    Jelliffe-Pawlowski, Laura L.
    Gould, Jeffrey B.
    Shaw, Gary M.
    O'Brodovich, Hugh M.
    PEDIATRICS, 2013, 132 (02) : 290 - 297
  • [2] A Genome-Wide Association Study (GWAS) of behavioral disinhibition
    McGue, Matt
    Miller, Michael
    Basu, Saonli
    Eskin, Eleazar
    Hicks, Brian
    Irons, Daniel
    Keyes, Margaret
    Legrand, Lisa
    Li, Xiang
    Malone, Steve
    Oetting, William
    Samek, Diana
    Schork, Nicholas
    Sul, Jae Hoon
    Vrieze, Scott
    Iacono, William
    BEHAVIOR GENETICS, 2011, 41 (06) : 923 - 924
  • [3] A Genome-Wide Association Study (GWAS) of Takotsubo syndrome
    Hakansson, H. F. K.
    Tornvall, P.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [4] How to interpret a genome-wide association study (GWAS)?
    Debette, Stephanie
    SANG THROMBOSE VAISSEAUX, 2012, 24 (05): : 240 - 247
  • [5] A genome-wide association study (GWAS) for myopia susceptibility in chicks
    Huang, Yu
    Kee, Chea-Su
    Yip, Shea-Ping
    Guggenheim, Jeremy A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [6] Accounting for multiple comparisons in a genome-wide association study (GWAS)
    Johnson, Randall C.
    Nelson, George W.
    Troyer, Jennifer L.
    Lautenberger, James A.
    Kessing, Bailey D.
    Winkler, Cheryl A.
    O'Brien, Stephen J.
    BMC GENOMICS, 2010, 11
  • [7] GENOME-WIDE ASSOCIATION STUDY (GWAS) AND ANALYSIS OF VIOLENCE IN SCHIZOPHRENIA
    de Luca, Vincenzo
    Tasmim, Samia
    Bani-Fatemi, Ali
    Roy, Anvesh
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S937 - S937
  • [8] Accounting for multiple comparisons in a genome-wide association study (GWAS)
    Randall C Johnson
    George W Nelson
    Jennifer L Troyer
    James A Lautenberger
    Bailey D Kessing
    Cheryl A Winkler
    Stephen J O'Brien
    BMC Genomics, 11
  • [9] A genome-wide association study (GWAS) of the human plasma proteome
    Jamnik, Joseph
    Garcia-Bailo, Bibiana
    Borchers, Christoph
    El-Sohemy, Ahmed
    FASEB JOURNAL, 2013, 27
  • [10] Translating Lung Function Genome-Wide Association Study (GWAS) Findings: New Insights for Lung Biology
    Kheirallah, A. K.
    Miller, S.
    Hall, I. P.
    Sayers, I.
    ADVANCES IN GENETICS, VOL 93, 2016, 93 : 57 - 145