Mapping spatial distribution of crop residues using PRISMA satellite imaging spectroscopy

被引:10
|
作者
Pepe, Monica [1 ]
Pompilio, Loredana [1 ]
Ranghetti, Luigi [1 ,2 ]
Nutini, Francesco [1 ]
Boschetti, Mirco [1 ]
机构
[1] Natl Res Council Italy, Inst Electromagnet Sensing Environm, Via Corti 12, Milan, Italy
[2] IBF Servizi, Jolanda Di Savoia, Italy
关键词
Hyperspectral remote sensing; non-photosynthetic vegetation; sustainable agriculture; machine learning; spectroscopy; NONPHOTOSYNTHETIC VEGETATION; COVER; SOIL; VARIABILITY; LEAF;
D O I
10.1080/22797254.2022.2122872
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Non-photosynthetic vegetation (NPV) plays a key role in soil conservation, which in turn is important in sustainable agriculture and carbon farming. For mapping NPV image spectroscopy proved to outperform multispectral sensors. PRISMA (PRecursore IperSpettrale della Missione Applicativa) is the forerunner of a new era of hyperspectral satellite missions, providing the proper spectral resolution for NPV mapping. This study takes advantage from both spectroscopy and machine-learning techniques. Exponential Gaussian Optimization was used for modelling known absorption bands (cellulose-lignin, pigments, water content and clays), resulting in a reduced feature space, which is split by a decision tree (DT) for mapping different field conditions (emerging, green and standing dead vegetation, crop residue and bare soil). DT training and validation exploited reference data, collected during PRISMA overpasses on a large farmland. Mapping results are accurate both at pixel and parcel level (O.A. > 90%; K > 0.9). Field status and crop rotation trajectories through time are derived by processing 12 images over 2020 and 2021. Results proved that PRISMA data are suitable for mapping field conditions at parcel scale with high confidence level. This is important in the perspective of other hyperspectral missions and is a premise toward quantitative estimates of NPV biophysical variable.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Remote sensing the spatial distribution of crop residues
    Daughtry, CST
    Hunt, ER
    Doraiswamy, PC
    McMurtrey, JE
    AGRONOMY JOURNAL, 2005, 97 (03) : 864 - 871
  • [2] Mapping the spatial distribution of species using airborne and spaceborne imaging spectroscopy: A case study of invasive plants
    Rakotoarivony, M. Ny Aina
    Gholizadeh, Hamed
    Hassani, Kianoosh
    Zhai, Lu
    Rossi, Christian
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [3] Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping
    Bugnet, M.
    Ederer, M.
    Lazarov, V. K.
    Li, L.
    Ramasse, Q. M.
    Loeffler, S.
    Kepaptsoglou, D. M.
    PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [4] Potentially mineralisable nitrogen: relationship to crop production and spatial mapping using infrared reflectance spectroscopy
    Murphy, D. V.
    Osman, M.
    Russell, C. A.
    Darmawanto, S.
    Hoyle, F. C.
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2009, 47 (07): : 737 - 741
  • [5] Spaceborne imaging spectroscopy enables carbon trait estimation in cover crop and cash crop residues
    Jennewein, Jyoti S.
    Hively, W.
    Lamb, Brian T.
    Daughtry, Craig S. T.
    Thapa, Resham
    Thieme, Alison
    Reberg-Horton, Chris
    Mirsky, Steven
    PRECISION AGRICULTURE, 2024, 25 (05) : 2165 - 2197
  • [6] Estimating Soil Organic Carbon using multitemporal PRISMA imaging spectroscopy data
    Ward, Kathrin J.
    Foerster, Saskia
    Chabrillat, Sabine
    GEODERMA, 2024, 450
  • [7] Mapping the spatial distribution of botanical composition and herbage mass in pastures using hyperspectral imaging
    Suzuki, Yumiko
    Okamoto, Hiroshi
    Takahashi, Makoto
    Kataoka, Takashi
    Shibata, Youichi
    GRASSLAND SCIENCE, 2012, 58 (01) : 1 - 7
  • [8] Mapping hailstorm damaged crop area using multispectral satellite data
    Prabhakar, Mathyam
    Gopinath, K. A.
    Reddy, A. G. K.
    Thirupathi, M.
    Rao, Ch Srinivasa
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2019, 22 (01): : 73 - 79
  • [9] Analysis of clustering methods for crop type mapping using satellite imagery
    Rivera, Antonio J.
    Perez-Godoy, Maria D.
    Elizondo, David
    Deka, Lipika
    del Jesus, Maria J.
    NEUROCOMPUTING, 2022, 492 : 91 - 106
  • [10] Mapping spatial disparity of canal water distribution under irrigated cropping environment using satellite imageries
    S. A. Rizvi
    M. Latif
    S. Ahmad
    International Journal of Environmental Science and Technology, 2012, 9 : 441 - 452