Seismic random noise attenuation with deep skip autoencoder based on hybrid attention mechanism

被引:1
|
作者
Huang, Lin [1 ]
Xue, Ya-juan [1 ]
Chen, Si-yi [1 ]
机构
[1] Chengdu Univ Informat Technol, Sch Commun Engn, Chengdu 610225, Peoples R China
关键词
Random noise attenuation; Skip connection; Hybrid pooling; Global attention mechanism; SEISLET TRANSFORM; RECONSTRUCTION; PREDICTION;
D O I
10.1016/j.jappgeo.2024.105308
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Denoising seismic data is a crucial step in seismic data processing to enhance the signal-to-noise ratio of data because random noise is inevitably introduced during seismic data acquisition owing to environmental factors. In this study, we introduce a symmetric skip-connected denoising method (A-SK22) based on a hybrid attention mechanism with a hybrid pool to attenuate noise in seismic data. The proposed method adopts the codingdecoding network structure of the U -Net network. In the encoding phase, hybrid pooling is employed to reconstruct seismic data more effectively, mitigating the risk of partial loss of valid information during downsampling. The network structure of hybrid pooling consists of a parallel arrangement of the average and maximum pooling. In the skip-link part, the sum operation, which reduces the computational cost, is adopted. Meanwhile, in pursuit of further mining the spatial and channel information of the seismic data, we added the global attention mechanism in the skip linking part. The recovery experiments conducted with synthetic and actual seismic data demonstrate the effectiveness of the proposed method in attenuating random noise while causing minimal distortion to essential seismic signals.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep denoising autoencoder for seismic random noise attenuation
    Saad, Omar M.
    Chen, Yangkang
    GEOPHYSICS, 2020, 85 (04) : V367 - V376
  • [2] Unsupervised 3-D Random Noise Attenuation Using Deep Skip Autoencoder
    Yang, Liuqing
    Wang, Shoudong
    Chen, Xiaohong
    Saad, Omar M.
    Chen, Wei
    Oboue, Yapo Abole Serge Innocent
    Chen, Yangkang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] A Twice Denoising Autoencoder Framework for Random Seismic Noise Attenuation
    Liao, Zhangquan
    Li, Yong
    Xia, En
    Liu, Yingtian
    Hu, Rui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] A Twice Denoising Autoencoder Framework for Random Seismic Noise Attenuation
    Liao, Zhangquan
    Li, Yong
    Xia, En
    Liu, Yingtian
    Hu, Rui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Attention mechanism-based deep denoiser for desert seismic random noise suppression
    Lin, Hongbo
    Liu, Chang
    Wang, Shigang
    Ye, Wenhai
    ACTA GEOPHYSICA, 2023, 71 (06) : 2781 - 2793
  • [6] Attention mechanism-based deep denoiser for desert seismic random noise suppression
    Hongbo Lin
    Chang Liu
    Shigang Wang
    Wenhai Ye
    Acta Geophysica, 2023, 71 : 2781 - 2793
  • [7] Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder
    Lin, Haoran
    Xu, Jian
    Xing, Lei
    Li, Qianqian
    Liu, Huaishan
    GEOPHYSICAL PROSPECTING, 2024, 72 (04) : 1428 - 1441
  • [8] Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network
    Zhang, Mi
    Liu, Yang
    Chen, Yangkang
    IEEE ACCESS, 2019, 7 : 179810 - 179822
  • [9] Unsupervised Deep Learning for Random Noise Attenuation of Seismic Data
    Liu, Bin
    Yue, Jinghang
    Zuo, Zhiwu
    Xu, Xinji
    Fu, Chao
    Yang, Senlin
    Jiang, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Seismic Random Noise Attenuation Using a Tied-Weights Autoencoder Neural Network
    Zhou, Huailai
    Guo, Yangqin
    Guo, Ke
    MINERALS, 2021, 11 (10)