Relation-Preserving Feature Embedding for Unsupervised Person Re-Identification

被引:2
|
作者
Wang, Xueping [1 ,2 ]
Liu, Min [3 ,4 ]
Wang, Fei [3 ,4 ]
Dai, Jianhua [1 ,2 ]
Liu, An-An [5 ]
Wang, Yaonan [3 ,4 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Prov Key Lab Intelligent Comp & Language Informat, Changsha 410081, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[4] Natl Engn Res Ctr RVC, Changsha 410082, Peoples R China
[5] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised learning; relation-preserving feature embedding; person re-identification;
D O I
10.1109/TMM.2023.3270636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some unsupervised approaches have been proposed recently for the person re-identification (ReID) problem since annotations of samples across cameras are time-consuming. However, most of these methods focus on the appearance content of the sample itself, and thus seldom take the structure relations among samples into account when learning the feature representation, which would provide a valuable guide for learning the representations of the samples. Thus hard samples may not be well solved due to the limited or even misleading information of the sample itself. To address this issue, in this article, we propose a Relation-Preserving Feature Embedding (RPE) model that leverages structure relations among samples to boost the performance of the unsupervised person ReID methods without requiring any sample annotations. RPE aims at integrating the sample content and the neighborhood structure relations among samples into the learning of feature embeddings by combining the advantages of the autoencoder and graph autoencoder. Specifically, a relation and content information fusion (RCIF) module is proposed to dynamically merge the information from both perspectives of content and relation levels for feature embedding learning. Also, due to the lack of the identity labels of samples, we adopt an adaptive optimization strategy to update the affinity relations among samples instead of the reconstruction of the whole affinity matrix for optimizing the RPE model, which is more suitable for the unsupervised ReID task. Rigorous experiments on three widely-used large-scale benchmarks for person ReID demonstrate the superiority of the proposed method over current state-of-the-art unsupervised methods.
引用
收藏
页码:714 / 723
页数:10
相关论文
共 50 条
  • [1] Central Feature Learning for Unsupervised Person Re-identification
    Wang, Binquan
    Asim, Muhammad
    Ma, Guoqi
    Zhu, Ming
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (08)
  • [2] HOMOCENTRIC HYPERSPHERE FEATURE EMBEDDING FOR PERSON RE-IDENTIFICATION
    Xiang, Wangmeng
    Huang, Jianqiang
    Qi, Xianbiao
    Hua, Xiansheng
    Zhang, Lei
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1237 - 1241
  • [3] Unsupervised Person Re-Identification by Deep Asymmetric Metric Embedding
    Yu, Hong-Xing
    Wu, Ancong
    Zheng, Wei-Shi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) : 956 - 973
  • [4] Learning the Meta Feature Transformer for Unsupervised Person Re-Identification
    Li, Qing
    Yan, Chuan
    Peng, Xiaojiang
    MATHEMATICS, 2024, 12 (12)
  • [5] Camera Invariant Feature Learning for Unsupervised Person Re-Identification
    Pang, Zhiqi
    Zhao, Lingling
    Liu, Qiuyang
    Wang, Chunyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6171 - 6182
  • [6] Hybrid feature constraint with clustering for unsupervised person re-identification
    Tongzhen Si
    Fazhi He
    Penglei Li
    The Visual Computer, 2023, 39 : 5121 - 5133
  • [7] Hybrid feature constraint with clustering for unsupervised person re-identification
    Si, Tongzhen
    He, Fazhi
    Li, Penglei
    VISUAL COMPUTER, 2023, 39 (10): : 5121 - 5133
  • [8] Centralized embedding hypersphere feature learning for person re-identification
    Wang, Yuanyuan
    Wang, Zhijian
    Jiang, Mingxin
    IMAGING SCIENCE JOURNAL, 2019, 67 (06): : 295 - 304
  • [9] Learning a Domain-Invariant Embedding for Unsupervised Person Re-identification
    Pu, Nan
    Georgiou, T. K.
    Bakker, Erwin M.
    Lew, Michael S.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [10] Robust Anchor Embedding for Unsupervised Video Person re-IDentification in the Wild
    Ye, Mang
    Lan, Xiangyuan
    Yuen, Pong C.
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 176 - 193