Inverse Scattering Using a Kohn-Vogelius Formulation and Shape Optimization Method

被引:0
|
作者
Bonnafont, Thomas [1 ]
Caubett, Fabien [2 ]
机构
[1] ENSTA Bretagne, UMR CNRS 6285, Lab STICC, F-29806 Brest, France
[2] CNRS, E2S UPPA, LMAP, UMR 5142, F-64000 Pau, France
关键词
Inverse scattering; Shape optimization; Kohn-Vogelius functional; Nesterov scheme; OBSTACLE;
D O I
10.23919/EuCAP57121.2023.10133032
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method to retrieve the form of a metallic object given partial electromagnetic measurements. We propose a numerical resolution of this inverse problem based on a shape optimization method. More precisely, we aim to minimize the so-called Kohn-Vogelius functional, which is numerically more stable than the least squares functional, by computing its shape gradient. The optimization problem is then solved using a Nesterov inertial scheme to accelerate the descent algorithm. Numerical simulations in 2D are provided to highlight the efficiency of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the Kohn-Vogelius formulation for solving an inverse source problem
    Menoret, P.
    Hrizi, M.
    Novotny, A. A.
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (01) : 56 - 72
  • [2] A NEW KOHN-VOGELIUS TYPE FORMULATION FOR INVERSE SOURCE PROBLEMS
    Cheng, Xiaoliang
    Gong, Rongfang
    Han, Weimin
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (04) : 1051 - 1067
  • [3] INVERSE PROBLEM RESOLUTION VIA KOHN-VOGELIUS FORMULATION AND TOPOLOGICAL SENSITIVITY METHOD
    Abdelwahed, Mohamed
    Chorfi, Nejmeddine
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [4] On a Kohn-Vogelius like formulation of free boundary problems
    Karsten Eppler
    Helmut Harbrecht
    [J]. Computational Optimization and Applications, 2012, 52 : 69 - 85
  • [5] Kohn-Vogelius formulation for plasma geometry identification problem
    Abdelwahed, Mohamed
    Chorfi, Nejmeddine
    [J]. BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [6] A KOHN-VOGELIUS FORMULATION TO DETECT AN OBSTACLE IMMERSED IN A FLUID
    Caubet, Fabien
    Dambrine, Marc
    Kateb, Djalil
    Timimoun, Chahnaz Zakia
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (01) : 123 - 157
  • [7] On a Kohn-Vogelius like formulation of free boundary problems
    Eppler, Karsten
    Harbrecht, Helmut
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) : 69 - 85
  • [8] A combination of Kohn-Vogelius and DDM methods for a geometrical inverse problem
    Chaabane, Slim
    Haddar, Houssem
    Jerbi, Rahma
    [J]. INVERSE PROBLEMS, 2023, 39 (09)
  • [9] On the Second-Order Shape Derivative of the Kohn-Vogelius Objective Functional Using the Velocity Method
    Bacani, Jerico B.
    Rabago, Julius Fergy T.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 2015
  • [10] Numerical identification of Robin coefficient by a Kohn-Vogelius type regularization method
    Yu, Yuan-jie
    Cheng, Xiao-liang
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (07) : 1014 - 1041