Antioxidants prevent particulate matter-induced senescence of lung fibroblasts

被引:3
|
作者
Jin, Sein [1 ,2 ]
Yoon, Sung-Jin [3 ]
Jung, Na-Young
Lee, Wang Sik
Jeong, Jinyoung [3 ,4 ,5 ]
Park, Young-Jun
Kim, Wantae [2 ]
Oh, Doo-Byoung [1 ,4 ]
Seo, Jinho [1 ,4 ]
机构
[1] Korea Res Inst Biosci & Biotechnol KRIBB, Aging Convergence Res Ctr, Daejeon 34141, South Korea
[2] Chungnam Natl Univ, Dept Biochem, Daejeon 34134, South Korea
[3] KRIBB, Environm Dis Res Ctr, Daejeon 34141, South Korea
[4] Univ Sci & Technol UST, KRIBB Sch Biotechnol, Dept Biosyst & Bioengn, Daejeon 34113, South Korea
[5] UST, KRIBB Sch Biosci, Dept Biomol Sci, Daejeon 34113, South Korea
关键词
Particulate matter; Cellular senescence; Reactive oxygen species; DNA damage Response; Antioxidants; CELLULAR SENESCENCE; DNA-DAMAGE; ROS GENERATION; PM10; EXPOSURE; CELLS; ACTIVATION; CANCER; MECHANISMS; INHIBITORS; PATHWAYS;
D O I
10.1016/j.heliyon.2023.e14179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Particulate matter (PM) contributes to human diseases, particularly lung disease; however, the molecular mechanism of its action is yet to be determined. Herein, we found that prolonged PM exposure induced the cellular senescence of normal lung fibroblasts via a DNA damage-mediated response. This PM-induced senescence (PM-IS) was only observed in lung fibroblasts but not in A549 lung adenocarcinoma cells. Mechanistic analysis revealed that reactive oxygen species (ROS) activate the DNA damage response signaling axis, increasing p53 phosphorylation, ultimately leading to cellular senescence via an increase in p21 expression without affecting the p16pRB pathway. A549 cells, instead, were resistant to PM-IS due to the PM-induced ROS production suppression. Water-soluble antioxidants, such as vitamin C and N-Acetyl Cysteine, were found to alleviate PM-IS by suppressing ROS production, implying that antioxidants are a promising therapeutic intervention for PM-mediated lung pathogenesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Particulate matter-induced epigenetic modifications and lung complications
    Afthab, Muhammed
    Hambo, Shadi
    Kim, Hyunji
    Alhamad, Ali
    Harb, Hani
    EUROPEAN RESPIRATORY REVIEW, 2024, 33 (174):
  • [2] Particulate matter-induced epigenetic changes and lung cancer
    Li, Jinghong
    Li, Willis X.
    Bai, Chunxue
    Song, Yuanlin
    CLINICAL RESPIRATORY JOURNAL, 2017, 11 (05): : 539 - 546
  • [3] Therapeutic Effects of Cornuside on Particulate Matter-Induced Lung Injury
    Kim, Go Oun
    Park, Eui Kyun
    Park, Dong Ho
    Song, Gyu Yong
    Bae, Jong-Sup
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [4] Establishment of particulate matter-induced lung injury model in mouse
    Se Yong Park
    Kyu Sup An
    Buhyun Lee
    Ju-Hee Kang
    Hyun Jin Jung
    Min Woo Kim
    Hyeon Yeol Ryu
    Kyu-Suk Shim
    Ki Taek Nam
    Yeo Sung Yoon
    Seung Hyun Oh
    Laboratory Animal Research, 37
  • [5] Korean Red Ginseng Attenuates Particulate Matter-Induced Senescence of Skin Keratinocytes
    Kang, Kyoung Ah
    Piao, Mei Jing
    Fernando, Pincha Devage Sameera Madushan
    Herath, Herath Mudiyanselage Udari Lakmini
    Yi, Joo Mi
    Hyun, Jin Won
    ANTIOXIDANTS, 2023, 12 (08)
  • [6] Particulate Matter-induced Microtubule Destabilization and Lung Endothelial Dysfunction
    Karki, P.
    Meliton, A. Y.
    Tian, Y.
    Ohmura, T.
    Mutlu, G. M.
    Birukova, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [7] Establishment of particulate matter-induced lung injury model in mouse
    Park, Se Yong
    An, Kyu Sup
    Lee, Buhyun
    Kang, Ju-Hee
    Jung, Hyun Jin
    Kim, Min Woo
    Ryu, Hyeon Yeol
    Shim, Kyu-Suk
    Nam, Ki Taek
    Yoon, Yeo Sung
    Oh, Seung Hyun
    LABORATORY ANIMAL RESEARCH, 2021, 37 (01)
  • [8] Particulate matter-induced hypersusceptibility to infection
    Inoue, Ken-ichiro
    Takano, Hirohisa
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2011, 128 (04) : 906 - 906
  • [9] Fine particulate matter-induced lung inflammation is mediated by pyroptosis in mices
    Li, Juan
    An, Zhen
    Song, Jie
    Du, Jinge
    Zhang, Lin
    Jiang, Jing
    Ma, Yanmei
    Wang, Chunzhi
    Zhang, Jingfang
    Wu, Weidong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2021, 219
  • [10] Plasma kallikrein contributes to ambient particulate matter-induced lung injury
    Wang, Bo
    Yan, Xiaofeng
    Chen, Fengwu
    Yang, Aizhen
    Lu, Yi
    Wu, Yi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 518 (03) : 409 - 415