Robust and continuous metric subregularity for linear inequality systems

被引:1
|
作者
Camacho, J. [1 ]
Canovas, M. J. [1 ]
Lopez, M. A. [2 ,3 ]
Parra, J. [1 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res, Alicante 03202, Spain
[2] Univ Alicante, Dept Math, Alicante 03071, Spain
[3] Federat Univ, CIAO, Ballarat, Vic, Australia
关键词
Radius of metric subregularity; Linear inequality systems; Calmness; Feasible set mapping; CALMNESS; MODULI;
D O I
10.1007/s10589-022-00437-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces two new variational properties, robust and continuous metric subregularity, for finite linear inequality systems under data perturbations. The motivation of this study goes back to the seminal work by Dontchev, Lewis, and Rockafellar (2003) on the radius of metric regularity. In contrast to the metric regularity, the unstable continuity behavoir of the (always finite) metric subregularity modulus leads us to consider the aforementioned properties. After characterizing both of them, the radius of robust metric subregularity is computed and some insights on the radius of continuous metric subregularity are provided.
引用
收藏
页码:967 / 988
页数:22
相关论文
共 50 条
  • [1] Robust and continuous metric subregularity for linear inequality systems
    J. Camacho
    M. J. Cánovas
    M. A. López
    J. Parra
    Computational Optimization and Applications, 2023, 86 : 967 - 988
  • [2] SUBREGULARITY INEQUALITY FOR CONJUGATE SYSTEMS ON LOCAL FIELDS
    CHAO, JA
    TAIBLESO.MH
    STUDIA MATHEMATICA, 1973, 46 (03) : 249 - 257
  • [3] METRIC SUBREGULARITY OF PIECEWISE LINEAR MULTIFUNCTIONS AND APPLICATIONS TO PIECEWISE LINEAR MULTIOBJECTIVE OPTIMIZATION
    Zheng, Xi Yin
    Ng, Kung Fu
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 154 - 174
  • [4] Nonlinear Metric Subregularity
    Kruger, Alexander Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (03) : 820 - 855
  • [5] The Radius of Metric Subregularity
    Dontchev, Asen L.
    Gfrerer, Helmut
    Kruger, Alexander Y.
    Outrata, Jiri V.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2020, 28 (03) : 451 - 473
  • [6] Metric Subregularity for aMultifunction
    Zheng, Xi Yin
    Journal of Mathematical Study, 2016, 49 (04): : 379 - 392
  • [7] Nonlinear Metric Subregularity
    Alexander Y. Kruger
    Journal of Optimization Theory and Applications, 2016, 171 : 820 - 855
  • [8] Holder metric subregularity for constraint systems in Asplund spaces
    Ouyang, Wei
    Zhang, Binbin
    Zhu, Jiangxing
    POSITIVITY, 2019, 23 (01) : 161 - 175
  • [9] The Radius of Metric Subregularity
    Asen L. Dontchev
    Helmut Gfrerer
    Alexander Y. Kruger
    Jiří V. Outrata
    Set-Valued and Variational Analysis, 2020, 28 : 451 - 473
  • [10] Stability of Linear Inequality Systems Measured by the Hausdorff Metric
    J. A. Mira
    G. Mora
    Set-Valued Analysis, 2000, 8 : 253 - 266