Global dynamics in Einstein-Gauss-Bonnet scalar field cosmology with matter

被引:7
|
作者
Millano, Alfredo D. [1 ]
Leon, Genly [1 ,2 ]
Paliathanasis, Andronikos [1 ,2 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Avenida Angamos 0610, Antofagasta 1280, Chile
[2] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
关键词
MODIFIED GRAVITY; INFLATIONARY UNIVERSE; GENERAL-RELATIVITY; DARK ENERGY; HORIZON; CONSTANT; FLATNESS; MODELS; TENSOR; FLUID;
D O I
10.1103/PhysRevD.108.023519
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the dynamics of the field equations in a four-dimensional isotropic andhomogeneous spatially flat Friedmann-Lemaitre-Robertson-Walker geometry in the context of Einstein-Gauss-Bonnet theory with a matter source and a scalar field coupled to the Gauss-Bonnet scalar. In this theory, the Gauss-Bonnet term contributes to the field equations. The mass of the scalar field depends on the potential function and the Gauss-Bonnet term. For the scalar field potential, we consider the exponential function and the coupling function between the scalar field and the Gauss-Bonnet scalar is considered to be the linear function. Moreover, the scalar field can have a phantom behavior. We consider a set of dimensionless variables and write the field equations into a system or algebraic-differential equations. For the latter, we investigate the equilibrium points and their stability properties. We use compactified variables to perform a global analysis of the asymptotic dynamics. This gravitational theory can explain the Universe's recent and past acceleration phases. Therefore, it can be used as a toy model for studying inflation or as a dark energy candidate.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fractional Einstein-Gauss-Bonnet Scalar Field Cosmology
    Micolta-Riascos, Bayron
    Millano, Alfredo D.
    Leon, Genly
    Droguett, Byron
    Gonzalez, Esteban
    Magana, Juan
    FRACTAL AND FRACTIONAL, 2024, 8 (11)
  • [2] Phase-Space Analysis of an Einstein-Gauss-Bonnet Scalar Field Cosmology
    Millano, Alfredo D.
    Leon, Genly
    Paliathanasis, Andronikos
    MATHEMATICS, 2023, 11 (06)
  • [3] Friedmann Dynamics Recovered from Compactified Einstein-Gauss-Bonnet Cosmology
    Canfora, F.
    Giacomini, A.
    Pavluchenko, S. A.
    Toporensky, A.
    GRAVITATION & COSMOLOGY, 2018, 24 (01): : 28 - 38
  • [4] Hamiltonian formulation of scalar field collapse in Einstein-Gauss-Bonnet gravity
    Taves, T.
    Leonard, C. D.
    Kunstatter, G.
    Mann, R. B.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (01)
  • [5] Einstein-Gauss-Bonnet gravity: Is it compatible with modern cosmology?
    Garcia-Aspeitia, Miguel A.
    Hernandez-Almada, A.
    PHYSICS OF THE DARK UNIVERSE, 2021, 32
  • [6] 6D Einstein-Gauss-Bonnet cosmology
    Makarenko A.N.
    Obukhov V.V.
    Osetrin K.E.
    Filippov A.E.
    Russian Physics Journal, 2007, 50 (8) : 826 - 831
  • [7] Nonlinear dynamics in the Einstein-Gauss-Bonnet gravity
    Shinkai, Hisa-aki
    Torii, Takashi
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [8] Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field
    Bravo Gaete, Moises
    Hassaine, Mokhtar
    PHYSICAL REVIEW D, 2013, 88 (10):
  • [9] Braneworld dynamics in Einstein-Gauss-Bonnet gravity
    Maeda, Hideki
    Sahni, Varun
    Shtanov, Yuri
    PHYSICAL REVIEW D, 2007, 76 (10):
  • [10] Dynamics of a higher-dimensional Einstein-Scalar-Gauss-Bonnet cosmology
    Millano, Alfredo D.
    Michea, Claudio
    Leon, Genly
    Paliathanasis, Andronikos
    PHYSICS OF THE DARK UNIVERSE, 2024, 46