The invariant manifold approach applied to global long-time dynamics of FitzHugh-Nagumo systems 

被引:0
|
作者
Zhao, Jia-Cheng [1 ]
Wang, Rong-Nian [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
FitzHugh-Nagumo system; High-dimensional space; Global finite-dimensional manifold; Uniform attracting; INERTIAL MANIFOLDS; SMOLUCHOWSKI EQUATION;
D O I
10.1016/j.jde.2023.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the FitzHugh-Nagumo system equipped with boundary condition of Dirichlet type on some two/three-dimensional domains. This system describes the signal transmission across the axonal membrane in neurophysiology. It is a semilinear parabolic PDE for the voltage variable coupled with a first-order ODE of space-time type for the recovery variable. We prove that there exists a finite-dimensional global manifold in the case of the fast recovery variable. Since the manifold is uniformly attracting, it gives geometric insight into the global long-time dynamics of the solutions. The proof is based on an abstract invariant manifold theorem for dynamical systems on a Banach space. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 155
页数:36
相关论文
共 50 条
  • [1] Long-Time Behavior of Non-Autonomous FitzHugh-Nagumo Lattice Systems
    Wannan, Rania T.
    Abdallah, Ahmed Y.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (03)
  • [2] GLOBAL-SOLUTIONS AND LONG-TIME BEHAVIOR TO A FITZHUGH-NAGUMO MYELINATED AXON MODEL
    CHEN, PL
    BELL, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (03) : 567 - 581
  • [3] Global Dynamical Behavior of FitzHugh-Nagumo Systems with Invariant Algebraic Surfaces
    Zhang, Liwei
    Yu, Jiang
    Zhang, Xiang
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [4] Dynamics of the FitzHugh-Nagumo system having invariant algebraic surfaces
    Llibre, Jaume
    Tian, Yuzhou
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [5] Dynamics of two FitzHugh-Nagumo systems with delayed coupling
    Yuan, GY
    Yang, SP
    Wang, GR
    Chen, SC
    ACTA PHYSICA SINICA, 2005, 54 (04) : 1510 - 1522
  • [6] Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling
    Buric, N
    Todorovic, D
    PHYSICAL REVIEW E, 2003, 67 (06):
  • [7] Exploiting Invariant Manifolds of Memristor Circuits to Reproduce FitzHugh-Nagumo Dynamics
    Innocenti, Giacomo
    Tesi, Alberto
    Di Marco, Mauro
    Forti, Mauro
    2022 11TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2022,
  • [8] An Invariant Winding Number for the FitzHugh-Nagumo System with Applications to Cardiac Dynamics
    Cytrynbaum, Eric N.
    Paton, Kelly M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04): : 1893 - 1922
  • [9] Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model
    Gong, PL
    Xu, JX
    PHYSICAL REVIEW E, 2001, 63 (03):
  • [10] Long-Time Behavior of Non-Autonomous FitzHugh–Nagumo Lattice Systems
    Rania T. Wannan
    Ahmed Y. Abdallah
    Qualitative Theory of Dynamical Systems, 2020, 19