Optimizing O bonding environment to improve structural stability and performance of O3-type NaNi0.5Mn0.5O2 cathode material

被引:3
|
作者
Zheng, Jianan [1 ]
Wang, Ziqing [1 ]
Zhang, Shengfeng [1 ]
Li, Ruotong [1 ]
Lei, Qiong [1 ]
Yang, Kaixiong [1 ]
Gu, Chenyang [1 ]
Cheng, Yang [1 ]
Yang, Weihua [1 ]
Fu, Fang [1 ]
机构
[1] Huaqiao Univ, Coll Mat Sci & Engn, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
O bonding environment; O3 layered cathode; Codoping; Sodium -ion batteries; Phase transition; LAYERED OXIDE CATHODE; ION;
D O I
10.1016/j.ssi.2023.116305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
O3-type sodium layered oxides are regarded as a highly suitable cathode for sodium-ion batteries (SIBs) owing to their high capacities and high compositional diversity. Nevertheless, rapid capacity decline and slow kinetics caused by complex phase transition and high tetrahedral site energy of Na+ diffusion transition state limit their practical use. Herein, we propose an effective strategy of optimizing O bonding environment to enhance the stability of the M-O bond and layered structure of the O3-type NaMn0.5Ni0.5O2 (NaMN) by Zn/Ti codoping, which has been confirmed by electrochemical tests, ex situ X-ray powder diffraction (XRD), and Rietveld refinement. As a consequence, Zn/Ti codoped O3-NaMn0.4Ni0.4Zn0.1Ti0.1O2 (NaMNZT) electrode delivers a high discharge capacity of 165.1 mAh g(-1) at 0.1C, superior rate performance of 80.8 mAh g(-1) at 5C, and 76.4% capacity retention after 100 cycles at 0.2C. This concept of optimizing O bonding environment affords a promising strategy for designing and constructing stable sodium ion host.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability
    Wang, Peng-Fei
    You, Ya
    Yin, Ya-Xia
    Guo, Yu-Guo
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (45) : 17660 - 17664
  • [2] Enhanced performance of Ni-MOFs-based O3-type NaNi0.5Mn0.5O2 cathode material for sodium-ion batteries
    Yang, Bo
    Zhong, Sheng-Kui
    Zhong, Zhuo-Kui
    Liu, Jie-Qun
    Bai, Shi-Wei
    Wu, Qian-Hui
    Liao, Zhi-Jian
    Shi, Shi-He
    Zhang, Zhi-Yuan
    RARE METALS, 2025,
  • [3] O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {010} facets as high performance cathode materials for sodium-ion batteries
    Mao, Qianjiang
    Gao, Rui
    Li, Qingyuan
    Ning, De
    Zhou, Dong
    Schuck, Goetz
    Schumacher, Gerhard
    Hao, Yongmei
    Liu, Xiangfeng
    CHEMICAL ENGINEERING JOURNAL, 2020, 382
  • [4] Facile Synthesis of O3-Type NaNi0.5Mn0.5O2 Single Crystals with Improved Performance in Sodium-Ion Batteries
    Darga, Joe
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (47) : 52729 - 52737
  • [5] Improved High Rate Performance and Cycle Performance of Al-Doped O3-Type NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries
    Hong, Ningyun
    Wu, Kang
    Peng, Zhengjun
    Zhu, Zenghu
    Jia, Guofeng
    Wang, Min
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (42): : 22925 - 22933
  • [6] Cu-Occupied Ni-Site O3-Type Layered NaNi0.5Mn0.5O2 with Enhanced Rate Performance for Sodium-ion Batteries
    Wan, Qingxin
    Li, Minmin
    Teng, Yingxue
    Chen, Shuwen
    Su, Guanqiao
    Bao, Shuo
    Lu, Jinlin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [7] Enhanced Na-storage properties of O3-type NaNi0.5Mn0.5O2 cathodes by doping and coating dual-modification strategy
    Yu, Caiyan
    Yang, Linying
    Sun, Shuwei
    Chen, Di
    Yin, Yanfeng
    Yang, Hui Ying
    Bai, Ying
    CERAMICS INTERNATIONAL, 2022, 48 (24) : 36715 - 36722
  • [8] Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries
    Yuan, Ding D.
    Wang, Yan X.
    Cao, Yu L.
    Ai, Xin P.
    Yang, Han X.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (16) : 8585 - 8591
  • [9] Synthesis of NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries via spray pyrolysis method
    Chang, Yijiao
    Zhou, Yongmao
    Wang, Zhixing
    Li, Xinhai
    Wang, Ding
    Duan, Jianguo
    Wang, Jiexi
    Yan, Guochun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [10] An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries
    Wang, Hongbo
    Gu, Minyi
    Jiang, Jingyu
    Lai, Chao
    Ai, Xinping
    JOURNAL OF POWER SOURCES, 2016, 327 : 653 - 657