Notes on Peng?s independence in sublinear expectation theory

被引:0
|
作者
Guo, Xiaofan [1 ,2 ]
Li, Shan [3 ]
Li, Xinpeng [1 ,2 ]
机构
[1] Shandong Univ, Minist Educ, Res Ctr Math & Interdisciplinary Sci, Frontiers Sci Ctr Nonlinear Expectat, Qingdao 266237, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Shandong First Med Univ, Coll Med Informat Engn, Tai An 271016, Peoples R China
关键词
Conditional expectation; Independence; Law of large numbers; Probability kernel; Sublinear expectation;
D O I
10.1016/j.spl.2022.109719
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new viewpoint of Peng's independence in sublinear expectation theory via conditional expectation and provides new construction of independent random variables on the canonical product space RN via probability kernels. As an application, the law of large numbers in random type under sublinear expectation is proved.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Choquet expectation and Peng's g-expectation
    Chen, ZJ
    Chen, T
    Davison, M
    [J]. ANNALS OF PROBABILITY, 2005, 33 (03): : 1179 - 1199
  • [2] Convergence rate of Peng's law of large numbers under sublinear expectations
    Hu, Mingshang
    Li, Xiaojuan
    Li, Xinpeng
    [J]. PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2021, 6 (03): : 261 - 266
  • [3] Uncertainty orders on the sublinear expectation space
    Tian, Dejian
    Jiang, Long
    [J]. OPEN MATHEMATICS, 2016, 14 : 247 - 259
  • [4] WEAK LAWS OF LARGE NUMBERS FOR SUBLINEAR EXPECTATION
    Chen, Zengjing
    Liu, Qingyang
    Zong, Gaofeng
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (3-4) : 637 - 651
  • [5] An α-stable limit theorem under sublinear expectation
    Bayraktar, Erhan
    Munk, Alexander
    [J]. BERNOULLI, 2016, 22 (04) : 2548 - 2578
  • [6] Theopolitical Notes on Israel's Declaration of Independence
    Harvey, Warren Zev
    [J]. JOURNAL OF ECUMENICAL STUDIES, 2021, 56 (03): : 338 - 346
  • [7] Limit theorems for delayed sums under sublinear expectation
    Hu, Cheng
    Wang, Li
    Zong, Gaofeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (01)
  • [8] Independence Under the -Expectation Framework
    Hu, Mingshang
    Li, Xiaojuan
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (03) : 1011 - 1020
  • [9] Notes on the Conditional Expectation
    Wang, Cheng
    Liu, Xueyi
    Zou, Hailei
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHANICAL SCIENCE AND ENGINEERING, 2016, 66
  • [10] Large deviation principle for diffusion processes under a sublinear expectation
    Chen ZengJing
    Xiong Jie
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (11) : 2205 - 2216