A slightly lifted convex relaxation for nonconvex quadratic programming with ball constraints

被引:0
|
作者
Burer, Samuel [1 ]
机构
[1] Univ Iowa, Dept Business Analyt, Iowa City, IA 52242 USA
关键词
90C20; 90C22; 90C25; 90C26; 90C30; OPTIMIZATION;
D O I
10.1007/s10107-024-02076-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Globally optimizing a nonconvex quadratic over the intersection of m balls in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} is known to be polynomial-time solvable for fixed m. Moreover, when m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1$$\end{document}, the standard semidefinite relaxation is exact. When m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}, it has been shown recently that an exact relaxation can be constructed using a disjunctive semidefinite formulation based essentially on two copies of the m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1$$\end{document} case. However, there is no known explicit, tractable, exact convex representation for m >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document}. In this paper, we construct a new, polynomially sized semidefinite relaxation for all m, which does not employ a disjunctive approach. We show that our relaxation is exact for m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}. Then, for m >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document}, we demonstrate empirically that it is fast and strong compared to existing relaxations. The key idea of the relaxation is a simple lifting of the original problem into dimension n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\, +\, 1$$\end{document}. Extending this construction: (i) we show that nonconvex quadratic programming over ||x||<= min{1,g+hTx}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert x\Vert \le \min \{ 1, g + h<^>T x \}$$\end{document} has an exact semidefinite representation; and (ii) we construct a new relaxation for quadratic programming over the intersection of two ellipsoids, which globally solves all instances of a benchmark collection from the literature.
引用
收藏
页数:23
相关论文
共 50 条