Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction

被引:1
|
作者
Gao, Yulei [1 ,2 ,5 ]
Wang, Chaolan [1 ]
Shen, Jiaxin [3 ]
Wang, Ziyi [4 ]
Liu, Yancun [1 ]
Chai, Yanfen [1 ,2 ,5 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
[2] Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
[3] Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R China
[4] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R China
[5] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Sepsis; Machine learning algorithms; Sensitivity; Specificity; Predictive accuracy; Network meta-analysis; DEFINITIONS; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2023.122982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. Methods: We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case -control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta -analysis, and QUADAS-2 tool was used to assess the certainty of evidence. Results: The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + BiLSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). Conclusions: DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta -analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis
    Yan Zhang
    Weiwei Xu
    Ping Yang
    An Zhang
    [J]. BMC Medical Informatics and Decision Making, 23
  • [2] Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis
    Zhang, Yan
    Xu, Weiwei
    Yang, Ping
    Zhang, An
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [3] Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
    Lucas M. Fleuren
    Thomas L. T. Klausch
    Charlotte L. Zwager
    Linda J. Schoonmade
    Tingjie Guo
    Luca F. Roggeveen
    Eleonora L. Swart
    Armand R. J. Girbes
    Patrick Thoral
    Ari Ercole
    Mark Hoogendoorn
    Paul W. G. Elbers
    [J]. Intensive Care Medicine, 2020, 46 : 383 - 400
  • [4] Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
    Fleuren, Lucas M.
    Klausch, Thomas L. T.
    Zwager, Charlotte L.
    Schoonmade, Linda J.
    Guo, Tingjie
    Roggeveen, Luca F.
    Swart, Eleonora L.
    Girbes, Armand R. J.
    Thoral, Patrick
    Ercole, Ari
    Hoogendoorn, Mark
    Elbers, Paul W. G.
    [J]. INTENSIVE CARE MEDICINE, 2020, 46 (03) : 383 - 400
  • [5] Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis
    Moulaei, Khadijeh
    Sharifi, Hamid
    Bahaadinbeigy, Kambiz
    Haghdoost, Ali Akbar
    Nasiri, Naser
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 179
  • [6] Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis
    Wu, Guosong
    Khair, Shahreen
    Yang, Fengjuan
    Cheligeer, Cheligeer
    Southern, Danielle
    Zhang, Zilong
    Feng, Yuanchao
    Xu, Yuan
    Quan, Hude
    Williamson, Tyler
    Eastwood, Cathy A.
    [J]. ANNALS OF MEDICINE AND SURGERY, 2022, 84
  • [7] Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis
    Sajjadian, Mehri
    Lam, Raymond W.
    Milev, Roumen
    Rotzinger, Susan
    Frey, Benicio N.
    Soares, Claudio N.
    Parikh, Sagar V.
    Foster, Jane A.
    Turecki, Gustavo
    Muller, Daniel J.
    Strother, Stephen C.
    Farzan, Faranak
    Kennedy, Sidney H.
    Uher, Rudolf
    [J]. PSYCHOLOGICAL MEDICINE, 2021, 51 (16) : 2742 - 2751
  • [8] Fluid Resuscitation in Sepsis A Systematic Review and Network Meta-analysis
    Rochwerg, Bram
    Alhazzani, Waleed
    Sindi, Anees
    Heels-Ansdell, Diane
    Thabane, Lehana
    Fox-Robichaud, Alison
    Mbuagbaw, Lawrence
    Szczeklik, Wojciech
    Alshamsi, Fayez
    Altayyar, Sultan
    Ip, Wang-Chun
    Li, Guowei
    Wang, Michael
    Wludarczyk, Anna
    Zhou, Qi
    Guyatt, Gordon H.
    Cook, Deborah J.
    Jaeschke, Roman
    Annane, Djillali
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 161 (05) : 347 - +
  • [9] Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review
    Parvin, A. Safiya
    Saleena, B.
    [J]. ICT EXPRESS, 2023, 9 (06): : 1215 - 1225
  • [10] Prediction of sepsis patients using machine learning approach: A meta-analysis
    Islam, Md. Mohaimenul
    Nasrin, Tahmina
    Walther, Bruno Andreas
    Wu, Chieh-Chen
    Yang, Hsuan-Chia
    Li , Yu-Chuan
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 170 : 1 - 9