Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak

被引:1
|
作者
Pan Shan-Shan [1 ,2 ]
Duan Yan-Min [1 ]
Xu Li-Qing [1 ]
Chao Yan [1 ,2 ]
Zhong Guo-Qiang [1 ]
Sun You-Wen [1 ]
Sheng Hui [1 ,2 ]
Liu Hai-Qing [1 ]
Chu Yu-Qi [1 ]
Lu Bo [1 ]
Jin Yi-Fei [1 ,2 ]
Hu Li-Qun [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
experimental advanced superconducting Tokamak; resonant magnetic perturbation; sawtooth oscillations;
D O I
10.7498/aps.72.20230347
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sawtooth oscillation is one of the most important magneto-hydrodynamic (MHD) instabilities in Tokamak plasma, which can result in the periodic relaxation of the temperature and density of the core plasma when the safety factor on the magnetic axis (q(0)) is lower than unity. Owing to the periodic relaxation of the plasma core parameters, sawtooth oscillations are beneficial to avoiding impurity accumulation in plasma core. However, the large sawtooth crash may trigger off other MHD instabilities, like tearing modes (TMs) or neoclassical tearing modes (NTMs), which is a matter of concern for the plasma stability. Therefore, it is essential to control sawtooth oscillations for ensuring safe operation in the future Tokamaks such as ITER. The resonant magnetic perturbation (RMP) is widely used to control edge-localized modes (ELMs) and divertor heat flux in Tokamak. The application of RMP has also been found to affect the sawtooth behaviors. This paper studies the influence of RMP coils at n = 2 on sawtooth behaviors in experimental advanced superconducting Tokamak (EAST), where n is the toroidal mode number of the applied RMP. It is found that the phase difference between upper RMP coil and lower RMP coil (Delta phi(UL) (degrees) = phi U (degrees) - phi(L)(degrees)) is a notable parameter of affecting sawtooth behavior. The experiments for scanning the phase difference are carried out. When the phase difference Delta phi(UL) of RMP at n = 2 is changed, the sawtooth period and amplitude become subsequently different. The minimum sawtooth period and amplitude appear at Delta phi(UL) = 270 degrees. At the same time, neutron yields measured by neutron diagnostic system have the same trend as sawtooth behavior during RMP phase difference scanning. The plasma response to RMP at n = 2 is analyzed by using the MARS-F code. The results show that the plasma responses much strongly at the Delta phi(UL) = 270 degrees. The loss of fast ion, caused by RMP coils, is possibly stronger at the Delta phi(UL) = 270 degrees than that at other phase difference Delta phi(UL). The loss of fast ion can reduces its stabilization effect on sawtooth behavior, which results in the reduction of the sawtooth period and amplitude. Further research is needed to optimize the sawtooth control method with RMP to make it compatible with plasma performance.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Effect of m/n=2/1 neoclassical tearing mode on sawtooth collapse in JT-60U
    Bando, T.
    Wakatsuki, T.
    Honda, M.
    Isayama, A.
    Shinohara, K.
    Inoue, S.
    Yoshida, M.
    Matsunaga, G.
    Takechi, M.
    Oyama, N.
    Ide, S.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (08)
  • [2] Sawtooth mitigation in 3D MHD tokamak modelling with applied magnetic perturbations
    Bonfiglio, D.
    Veranda, M.
    Cappello, S.
    Chacon, L.
    Escande, D. F.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
  • [3] Sawtooth activities in EAST neutral beam injection plasma
    Chao, Yan
    Xu, Liqing
    Hu, Liqun
    Yuan, Yi
    Zhang, Yongkuan
    Lyu, Bo
    Zhong, Guoqiang
    Liu, Yong
    Liu, Haiqing
    Du, Hongfei
    [J]. AIP ADVANCES, 2019, 9 (01)
  • [4] The physics of sawtooth stabilization
    Chapman, I. T.
    Pinches, S. D.
    Graves, J. P.
    Akers, R. J.
    Appel, L. C.
    Budny, R. V.
    Coda, S.
    Conway, N. J.
    de Bock, M.
    Eriksson, L-G
    Hastie, R. J.
    Hender, T. C.
    Huysmans, G. T. A.
    Johnson, T.
    Koslowski, H. R.
    Kraemer-Flecken, A.
    Lennholm, M.
    Liang, Y.
    Saarelma, S.
    Sharapov, S. E.
    Voitsekhovitch, I.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B385 - B394
  • [5] Physics of Alfven waves and energetic particles in burning plasmas
    Chen, Liu
    Zonca, Fulvio
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (01)
  • [6] Features of ion and electron fishbone instabilities on HL-2A
    Chen, W.
    Ding, X. T.
    Liu, Yi.
    Yang, Q. W.
    Ji, X. Q.
    Isobe, M.
    Yuan, G. L.
    Zhang, Y. P.
    Zhou, Y.
    Song, X. Y.
    Dong, Y. B.
    Li, W.
    Zhou, J.
    Lei, G. J.
    Cao, J. Y.
    Deng, W.
    Song, X. M.
    Duan, X. R.
    [J]. NUCLEAR FUSION, 2010, 50 (08)
  • [7] Overview of the J-TEXT progress on RMP and disruption physics
    Ding, Yonghua
    Chen, Zhongyong
    Chen, Zhipeng
    Yang, Zhoujun
    Wang, Nengchao
    Hu, Qiming
    Rao, Bo
    Chen, Jie
    Cheng, Zhifeng
    Gao, Li
    Jiang, Zhonghe
    Wang, Lu
    Wang, Zhijiang
    Zhang, Xiaoqing
    Zheng, Wei
    Zhang, Ming
    Zhuang, Ge
    Yu, Qingquan
    Liang, Yunfeng
    Yu, Kexun
    Hu, Xiwei
    Pan, Yuan
    Gentle, Kenneth William
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (12)
  • [8] Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
    Goniche, M.
    Dumont, R. J.
    Bobkov, V.
    Buratti, P.
    Brezinsek, S.
    Challis, C.
    Colas, L.
    Czarnecka, A.
    Drewelow, P.
    Fedorczak, N.
    Garcia, J.
    Giroud, C.
    Graham, M.
    Graves, J. P.
    Hobirk, J.
    Jacquet, P.
    Lerche, E.
    Mantica, P.
    Monakhov, I.
    Monier-Garbet, P.
    Nave, M. F. F.
    Noble, C.
    Nunes, I.
    Puetterich, T.
    Rimini, F.
    Sertoli, M.
    Valisa, M.
    Van Eester, D.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (05)
  • [9] Toroidal modeling of plasma response to RMP fields for HL-2M
    Hao, G. Z.
    Li, C. Y.
    Liu, Y. Q.
    Chen, H. T.
    Wang, S.
    Bai, X.
    Dong, G. Q.
    He, H. D.
    Zhao, Y. F.
    Miao, Y. T.
    Zhou, L. N.
    Xu, J. Q.
    Zhang, N.
    Chen, Q.
    Sun, T. F.
    Ji, X. Q.
    Liu, Yi
    Zhong, W. L.
    Xu, M.
    Duan, X. R.
    [J]. NUCLEAR FUSION, 2021, 61 (12)
  • [10] Full-orbit simulation of fast ion loss under resonant magnetic perturbations in the EAST tokamak
    He, K.
    Sun, Y.
    Wan, B. N.
    Gu, S.
    Jia, M.
    Hu, Y.
    [J]. NUCLEAR FUSION, 2021, 61 (01)