Construction of ZnO/Zn3In2S6/Pt with integrated S-scheme/Schottky heterojunctions for boosting photocatalytic hydrogen evolution and bisphenol a degradation

被引:23
|
作者
Yang, Lifang [1 ]
Si, Jiangju [1 ]
Liang, Liang [1 ]
Wang, Yunfei [1 ]
Zhu, Li [1 ]
Zhang, Zizhong [2 ]
机构
[1] Xinxiang Univ, Coll Chem & Mat Engn, Xinxiang 453003, Peoples R China
[2] Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, PR, Brazil
基金
中国国家自然科学基金;
关键词
S-scheme structure; Schottky junction; H; 2; generation; Bisphenol A degradation; ZnO; Pt; CO-DOPED ZNO; SEMICONDUCTOR; NORFLOXACIN; PERFORMANCE; COCATALYST; OXIDATION;
D O I
10.1016/j.jcis.2023.06.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic water splitting has been identified as a promising solution to tackle the current environmental and energy crisis in the world. However, the challenge of this green technology is the inefficient separation and utilization of photogenerated electron-hole pairs in photocatalysts. To overcome this challenge in one system, a ternary ZnO/Zn3In2S6/Pt material was prepared as a photocatalyst using a stepwise hydrothermal process and in situ photoreduction deposition. The integrated S-scheme/Schottky heterojunction in the constructed ZnO/ Zn3In2S6/Pt photocatalyst enabled it to exhibit efficient photoexcited charge separation/transfer. The evolved H2 reached up to 3.5 mmol g-1h-1. Meanwhile, the ternary composite possessed a high cyclic stability against photo corrosion under irradiation. Practically, the ZnO/Zn3In2S6/Pt photocatalyst also showed great potential for H2 evolution while simultaneously degrading organic contaminants like bisphenol A. It is hoped in this work that the incorporation of Schottky junctions and S-scheme heterostructures in the construction of photocatalysts would lead to accelerated electron transfer and high photoinduced electron-hole pair separation, respectively, to synergistically enhance the performance of photocatalysts.
引用
收藏
页码:855 / 866
页数:12
相关论文
共 50 条
  • [1] The construction of S-scheme heterostructure in ultrathin WS2/Zn3In2S6 nanosheets for enhanced photocatalytic hydrogen evolution
    Liu, Wendi
    Xiong, Ya
    Liu, Qian
    Chang, Xiao
    Tian, Jian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 651 : 633 - 644
  • [2] S-scheme In2S3/Zn3In2S6 microsphere for efficient photocatalytic H2 evolution with simultaneous photodegradation of bisphenol A
    Yang, Lifang
    Li, Aoqi
    Dang, Tan
    Wang, Yunfei
    Liang, Liang
    Tang, Jun
    Cui, Yanjuan
    Zhang, Zizhong
    APPLIED SURFACE SCIENCE, 2023, 612
  • [3] Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution
    Wu, Xinhe
    Chen, Guoqiang
    Wang, Juan
    Li, Jinmao
    Wang, Guohong
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (06)
  • [4] Efficient construction of S-scheme heterojunctions for photocatalytic hydrogen production
    Xiao, Qian
    Yang, Xueying
    Fan, Linlin
    Liu, Yafeng
    Wen, Bo
    Guo, Xin
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (10) : 4108 - 4118
  • [5] Boosting the photocatalytic hydrogen evolution performance by fabricating the NiO/Zn3In2S6 p-n heterojunction
    Li, Yubao
    Li, Hanke
    Li, Shuang
    Li, Ming
    He, Ping
    Xiao, Yao
    Chen, Jiufu
    Zhou, Yafen
    Ren, Tongyan
    APPLIED SURFACE SCIENCE, 2024, 642
  • [6] A review on S-scheme and dual S-scheme heterojunctions for photocatalytic hydrogen evolution, water detoxification and CO2 reduction
    Kumar, Amit
    Khosla, Atul
    Sharma, Sunil Kumar
    Dhiman, Pooja
    Sharma, Gaurav
    Gnanasekaran, Lalitha
    Naushad, Mu.
    Stadler, Florian J.
    FUEL, 2023, 333
  • [7] Rationally constructed CaBi2Ta2O9/Bi2S3 S-scheme heterojunctions for boosting photocatalytic hydrogen evolution
    Li, Jinming
    Zhang, Weiyu
    Jia, Xiaowei
    Liu, Yufeng
    Yang, Jinzheng
    Wang, Yali
    Zhang, Shikang
    Zhang, Ruyu
    Guo, Zhenfu
    MATERIALS LETTERS, 2025, 384
  • [8] COFs-Ph@CdS S-scheme heterojunctions with photocatalytic hydrogen evolution and efficient degradation properties
    You, Dan
    Pan, Zhiquan
    Cheng, Qingrong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 930
  • [9] Visible light driven S-scheme heterojunction Zn3In2S6/Bi2MoO6 for efficient degradation of metronidazole
    Wang, Chen
    Liu, Haiyan
    Wang, Guifang
    Huang, Wenyu
    Wei, Zongwu
    Fang, Haiyan
    Shen, Fang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 917
  • [10] ZnO-CdS-Ag2S double S-scheme heterojunctions with significant hydrogen evolution reaction and dye degradation properties
    Lotfi, Hadis
    Molaei, Mehdi
    Khazraei, Sepideh
    Karimipour, Masoud
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1458 - 1468