Privacy-Preserving Computation for Peer-to-Peer Energy Trading on a Public Blockchain

被引:4
|
作者
Mitrea, Dan [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
secure multi-party computation; peer-to-peer energy trading; groups of prosumers; flexibility orders encoding; lower gas consumption; public blockchain; SCHEME; COMMUNICATION; MARKETS; NETWORK;
D O I
10.3390/s23104640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To ensure the success of energy transition and achieve the target of reducing the carbon footprint of energy systems, the management of energy systems needs to be decentralized. Public blockchains offer favorable features to support energy sector democratization and reinforce citizens' trust, such as tamper-proof energy data registration and sharing, decentralization, transparency, and support for peer-to-peer (P2P) energy trading. However, in blockchain-based P2P energy markets, transactional data are public and accessible, which raises privacy concerns related to prosumers' energy profiles while lacking scalability and featuring high transactional costs. In this paper, we employ secure multi-party computation (MPC) to assure privacy on a P2P energy flexibility market implementation in Ethereum by combining the prosumers' flexibility orders data and storing it safely on the chain. We provide an encoding mechanism for orders on the energy market to obfuscate the amount of energy traded by creating groups of prosumers, by splitting the amount of energy from bids and offers, and by creating group-level orders. The solution wraps around the smart contracts-based implementation of an energy flexibility marketplace, assuring privacy features on all market operations such as order submission, matching bids and offers, and commitment in trading and settlement. The experimental results show that the proposed solution is effective in supporting P2P energy flexibility trading, reducing the number of transactions, and gas consumption with a limited computational time overhead.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bidirectional Privacy-Preserving Network- Constrained Peer-to-Peer Energy Trading Based on Secure Multiparty Computation and Blockchain
    Zhou, Xin
    Wang, Bin
    Guo, Qinglai
    Sun, Hongbin
    Pan, Zhaoguang
    Tian, Nianfeng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 602 - 613
  • [2] Privacy-Preserving Peer-to-Peer Energy Trading via Hybrid Secure Computations
    Liu, Junhong
    Long, Qinfei
    Liu, Rong-Peng
    Liu, Wenjie
    Cui, Xin
    Hou, Yunhe
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1951 - 1964
  • [3] Privacy-Preserving Electric Vehicle Charging for Peer-to-Peer Energy Trading Ecosystems
    Radi, Eman Mohammed
    Lasla, Noureddine
    Bakiras, Spiridon
    Mahmoud, Mohamed
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [4] Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids Using Functional Encryption
    Son, Ye-Byoul
    Im, Jong-Hyuk
    Kwon, Hee-Yong
    Jeon, Seong-Yun
    Lee, Mun-Kyu
    ENERGIES, 2020, 13 (06)
  • [5] Asynchronous privacy-preserving iterative computation on peer-to-peer networks
    J. A. M. Naranjo
    L. G. Casado
    Márk Jelasity
    Computing, 2012, 94 : 763 - 782
  • [6] Asynchronous privacy-preserving iterative computation on peer-to-peer networks
    Naranjo, J. A. M.
    Casado, L. G.
    Jelasity, Mark
    COMPUTING, 2012, 94 (8-10) : 763 - 782
  • [7] A Privacy-Preserving Consensus Mechanism for ADMM-Based Peer-to-Peer Energy Trading
    Li, Zhihu
    Zhao, Bing
    Guo, Hongxia
    Zhai, Feng
    Li, Lin
    SYMMETRY-BASEL, 2023, 15 (08):
  • [8] A Privacy-Preserving, Two-Party, Secure Computation Mechanism for Consensus-Based Peer-to-Peer Energy Trading in the Smart Grid
    Li, Zhihu
    Xu, Haiqing
    Zhai, Feng
    Zhao, Bing
    Xu, Meng
    Guo, Zhenwei
    SENSORS, 2022, 22 (22)
  • [9] Lightweight Privacy-Preserving Peer-to-Peer Data Integration
    Zhang, Ye
    Wong, Wai-Kit
    Yiu, S. M.
    Mamoulis, Nikos
    Cheung, David W.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (03): : 157 - 168
  • [10] A Blockchain Peer-to-Peer Energy Trading System for Microgrids
    Gao, Jianbin
    Asamoah, Kwame Omono
    Xia, Qi
    Sifah, Emmanuel Boateng
    Amankona, Obiri Isaac
    Xia, Hu
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (05) : 3944 - 3960