Quantum deep learning by sampling neural nets with a quantum annealer

被引:4
|
作者
Higham, Catherine F. [1 ]
Bedford, Adrian [2 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow G12 8QQ, Scotland
[2] OxBrdgRbtx Ltd, Stratford Upon Avon CV37 6XU, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/s41598-023-30910-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate the feasibility of framing a classically learned deep neural network as an energy based model that can be processed on a one-step quantum annealer in order to exploit fast sampling times. We propose approaches to overcome two hurdles for high resolution image classification on a quantum processing unit (QPU): the required number and the binary nature of the model states. With this novel method we successfully transfer a pretrained convolutional neural network to the QPU. By taking advantage of the strengths of quantum annealing, we show the potential for classification speedup of at least one order of magnitude.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum deep learning by sampling neural nets with a quantum annealer
    Catherine F. Higham
    Adrian Bedford
    Scientific Reports, 13
  • [2] Fair Sampling by Simulated Annealing on Quantum Annealer
    Yamamoto, Masayuki
    Ohzeki, Masayuki
    Tanaka, Kazuyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (02)
  • [3] Quantum Neural Nets
    Michail Zak
    Colin P. Williams
    International Journal of Theoretical Physics, 1998, 37 : 651 - 684
  • [4] Quantum neural nets
    Zak, M
    Williams, CP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (02) : 651 - 684
  • [5] Thermodynamics of a quantum annealer
    Buffoni, Lorenzo
    Campisi, Michele
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03):
  • [6] Biclustering with a quantum annealer
    Lorenzo Bottarelli
    Manuele Bicego
    Matteo Denitto
    Alessandra Di Pierro
    Alessandro Farinelli
    Riccardo Mengoni
    Soft Computing, 2018, 22 : 6247 - 6260
  • [7] Biclustering with a quantum annealer
    Bottarelli, Lorenzo
    Bicego, Manuele
    Denitto, Matteo
    Di Pierro, Alessandra
    Farinelli, Alessandro
    Mengoni, Riccardo
    SOFT COMPUTING, 2018, 22 (18) : 6247 - 6260
  • [8] Quantum optimization of complex systems with a quantum annealer
    Abel, Steve
    Blance, Andrew
    Spannowsky, Michael
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [9] Testing a Quantum Annealer as a Quantum Thermal Sampler
    Izquierdo, Zoe Gonzalez
    Hen, Itay
    Albash, Tameem
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2021, 2 (02):
  • [10] Predicting quantum potentials by deep neural network and metropolis sampling
    Hong, Rui
    Zhou, Peng-Fei
    Xi, Bin
    Hu, Jie
    Ji, An-Chun
    Ran, Shi-Ju
    SCIPOST PHYSICS CORE, 2021, 4 (03):