Conditional transcriptome-wide association study for fine-mapping candidate causal genes

被引:11
|
作者
Liu, Lu [1 ,2 ]
Yan, Ran [1 ,2 ]
Guo, Ping [1 ,2 ]
Ji, Jiadong [3 ]
Gong, Weiming [1 ,2 ]
Xue, Fuzhong [1 ,2 ]
Yuan, Zhongshang [1 ,2 ]
Zhou, Xiang [4 ,5 ]
机构
[1] Shandong Univ, Sch Publ Hlth, Dept Biostat, Cheeloo Coll Med, Jinan, Peoples R China
[2] Shandong Univ, Inst Med Dataol, Cheeloo Coll Med, Jinan, Peoples R China
[3] Shandong Univ, Inst Financial Studies, Jinan, Peoples R China
[4] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
TRAITS; METAANALYSIS; MUTATIONS; IMPROVES; POWER;
D O I
10.1038/s41588-023-01645-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies (TWASs) aim to integrate genome-wide association studies with expression-mapping studies to identify genes with genetically predicted expression (GReX) associated with a complex trait. In the present report, we develop a method, GIFT (gene-based integrative fine-mapping through conditional TWAS), that performs conditional TWAS analysis by explicitly controlling for GReX of all other genes residing in a local region to fine-map putatively causal genes. GIFT is frequentist in nature, explicitly models both expression correlation and cis-single nucleotide polymorphism linkage disequilibrium across multiple genes and uses a likelihood framework to account for expression prediction uncertainty. As a result, GIFT produces calibrated P values and is effective for fine-mapping. We apply GIFT to analyze six traits in the UK Biobank, where GIFT narrows down the set size of putatively causal genes by 32.16-91.32% compared with existing TWAS fine-mapping approaches. The genes identified by GIFT highlight the importance of vessel regulation in determining blood pressures and lipid metabolism for regulating lipid levels.
引用
收藏
页码:348 / +
页数:19
相关论文
共 50 条
  • [1] Conditional transcriptome-wide association study for fine-mapping candidate causal genes
    Lu Liu
    Ran Yan
    Ping Guo
    Jiadong Ji
    Weiming Gong
    Fuzhong Xue
    Zhongshang Yuan
    Xiang Zhou
    Nature Genetics, 2024, 56 : 348 - 356
  • [2] Probabilistic fine-mapping of transcriptome-wide association studies
    Nicholas Mancuso
    Malika K. Freund
    Ruth Johnson
    Huwenbo Shi
    Gleb Kichaev
    Alexander Gusev
    Bogdan Pasaniuc
    Nature Genetics, 2019, 51 : 675 - 682
  • [3] Probabilistic fine-mapping of transcriptome-wide association studies
    Mancuso, Nicholas
    Freund, Malika K.
    Johnson, Ruth
    Shi, Huwenbo
    Kichaev, Gleb
    Gusev, Alexander
    Pasaniuc, Bogdan
    NATURE GENETICS, 2019, 51 (04) : 675 - +
  • [4] Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies
    Lu, Zeyun
    Gopalan, Shyamalika
    Yuan, Dong
    Conti, David, V
    Pasaniuc, Bogdan
    Gusev, Alexander
    Mancuso, Nicholas
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (08) : 1388 - 1404
  • [5] A powerful fine-mapping method for transcriptome-wide association studies
    Chong Wu
    Wei Pan
    Human Genetics, 2020, 139 : 199 - 213
  • [6] A powerful fine-mapping method for transcriptome-wide association studies
    Wu, Chong
    Pan, Wei
    HUMAN GENETICS, 2020, 139 (02) : 199 - 213
  • [7] Transcriptome-wide association study reveals candidate causal genes for lung cancer
    Bosse, Yohan
    Li, Zhonglin
    Xia, Jun
    Manem, Venkata
    Carreras-Torres, Robert
    Gabriel, Aurelie
    Gaudreault, Nathalie
    Albanes, Demetrius
    Aldrich, Melinda C.
    Andrew, Angeline
    Arnold, Susanne
    Bickeboeller, Heike
    Bojesen, Stig E.
    Brennan, Paul
    Brunnstrom, Hans
    Caporaso, Neil
    Chen, Chu
    Christiani, David C.
    Field, John K.
    Goodman, Gary
    Grankvist, Kjell
    Houlston, Richard
    Johansson, Mattias
    Johansson, Mikael
    Kiemeney, Lambertus A.
    Lam, Stephen
    Landi, Maria T.
    Lazarus, Philip
    Le Marchand, Loic
    Liu, Geoffrey
    Melander, Olle
    Rennert, Gadi
    Risch, Angela
    Rosenberg, Susan M.
    Schabath, Matthew B.
    Shete, Sanjay
    Song, Zhuoyi
    Stevens, Victoria L.
    Tardon, Adonina
    Wichmann, H-Erich
    Woll, Penella
    Zienolddiny, Shan
    Obeidat, Ma'en
    Timens, Wim
    Hung, Rayjean J.
    Joubert, Philippe
    Amos, Christopher I.
    McKay, James D.
    INTERNATIONAL JOURNAL OF CANCER, 2020, 146 (07) : 1862 - 1878
  • [8] Transcriptome-wide association study reveals candidate causal genes for lung cancer
    Clemenceau, Alisson
    Lamontagne, Maxime
    Torres, Robert Carreras
    Obeidat, Ma'en
    Timens, Wim
    Joubert, Philippe
    Amos, Christopher I.
    McKay, James D.
    Bosse, Yohan
    CANCER RESEARCH, 2018, 78 (13)
  • [9] Transcriptome-Wide Association Study Reveals Candidate Causal Genes for Lung Cancer
    Clemenceau, A.
    Lamontagne, M.
    Torres, R. Carreras
    Obeidat, M.
    Timens, W.
    Joubert, P.
    Amos, C.
    Mckay, J.
    Bosse, Y.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S365 - S365
  • [10] Transcriptome-wide association study by different approaches reveals candidate causal genes for cannabis use disorder
    Gao, Jiayang
    Guo, Xin
    Yan, Chunxia
    Gong, Xiaojuan
    Ma, Pan
    Gu, Shanzhi
    Zhang, Bao
    GENE, 2023, 851