AEKF-based trajectory-error compensation of knee exoskeleton for human-exoskeleton interaction control

被引:2
|
作者
Zhang, Yuepeng
Cao, Guangzhong [1 ]
Li, Linglong
Diao, Dongfeng
机构
[1] Shenzhen Univ, Coll Mechatron & Control Engn, Guangdong Key Lab Electromagnet Control & Intellig, Shenzhen, Peoples R China
来源
ROBOTIC INTELLIGENCE AND AUTOMATION | 2024年 / 44卷 / 01期
基金
中国国家自然科学基金;
关键词
Extended Kalman filter; Knee exoskeleton; MODEL-PREDICTIVE CONTROL; GAIT REHABILITATION; PERFORMANCE; TRACKING; DRIVEN; JOINT;
D O I
10.1108/RIA-04-2023-0058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PurposeThe purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human-exoskeleton interaction motion.Design/methodology/approachA trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human-exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human-exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.FindingsSix volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human-exoskeleton interaction.Originality/valueThe AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human-exoskeleton interaction movements.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [1] Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control
    Rodrigues-Carvalho, Camila
    Fernandez-Garcia, Marvin
    Pinto-Fernandez, David
    Sanz-Morere, Clara
    Barroso, Filipe Oliveira
    Borromeo, Susana
    Rodriguez-Sanchez, Cristina
    Moreno, Juan C.
    del-Ama, Antonio J.
    SENSORS, 2023, 23 (02)
  • [2] Human-exoskeleton interaction portrait
    Shushtari, Mohammad
    Foellmer, Julia
    Arami, Arash
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2024, 21 (01)
  • [3] Human-Exoskeleton Interaction Force Estimation in Indego Exoskeleton
    Shushtari, Mohammad
    Arami, Arash
    ROBOTICS, 2023, 12 (03)
  • [4] Hierarchical learning control with physical human-exoskeleton interaction
    Huang, Rui
    Cheng, Hong
    Guo, Hongliang
    Lin, Xichuan
    Zhang, Jianwei
    INFORMATION SCIENCES, 2018, 432 : 584 - 595
  • [5] Impedance Reduction Control of a Knee Joint Human-Exoskeleton System
    Huo, Weiguang
    Mohammed, Samer
    Amirat, Yacine
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (06) : 2541 - 2556
  • [6] The Effect of Transparency on Human-Exoskeleton Interaction
    Wang, Yilin
    Qiu, Jing
    Cheng, Hong
    Hu, Xiuying
    Xu, Peng
    Hou, Jingming
    Xie, Hongqin
    DIGITAL HUMAN MODELING AND APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS AND RISK MANAGEMENT, DHM 2023, PT I, 2023, 14028 : 642 - 652
  • [7] Minimizing Human-Exoskeleton Interaction Force Using Compensation for Dynamic Uncertainty Error with Adaptive RBF Network
    Mien Ka Duong
    Hong Cheng
    Huu Toan Tran
    Qiu Jing
    Journal of Intelligent & Robotic Systems, 2016, 82 : 413 - 433
  • [8] Minimizing Human-Exoskeleton Interaction Force Using Compensation for Dynamic Uncertainty Error with Adaptive RBF Network
    Mien Ka Duong
    Cheng, Hong
    Huu Toan Tran
    Jing, Qiu
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 82 (3-4) : 413 - 433
  • [9] Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System
    Wang, Zhipeng
    Yang, Chifu
    Ding, Zhen
    Yang, Tao
    Guo, Hao
    Jiang, Feng
    Tian, Bowen
    SENSORS, 2022, 22 (03)
  • [10] Modelisation of a Human-Exoskeleton Interaction for Cerebral Palsy
    Bonnefoy, Aurelie
    Otmani, Sabrina
    Mansard, Nicolas
    Stasse, Olivier
    Michon, Guilhem
    Watier, Bruno
    2023 INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS, ISMR, 2023,