Sentinel-1 Imagery Used for Estimation of Soil Organic Carbon by Dual-Polarization SAR Vegetation Indices

被引:5
|
作者
dos Santos, Erli Pinto [1 ]
Moreira, Michel Castro [1 ]
Fernandes-Filho, Elpidio Inacio [2 ]
Dematte, Jose Alexandre M. [3 ]
Dionizio, Emily Ane [1 ]
da Silva, Demetrius David [1 ]
Cruz, Renata Ranielly Pedroza [4 ]
Moura-Bueno, Jean Michel [5 ]
dos Santos, Uemeson Jose [6 ]
Costa, Marcos Heil [1 ]
机构
[1] Univ Fed Vicosa, Dept Agr Engn, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Soil, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[3] Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Soil Sci, Padua Dias Ave, BR-13418900 Piracicaba, SP, Brazil
[4] Univ Fed Vicosa, Dept Agron, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[5] Univ Fed Santa Maria, Soil Sci Dept, Roraima Ave 1000, BR-97105900 Santa Maria, RS, Brazil
[6] Fed Inst Educ Sci & Technol Para, Campus Obidos,Rodovia PA 437,Km 02, BR-68250000 Obidos, PA, Brazil
关键词
synthetic aperture radar; machine learning; Brazilian Cerrado; digital soil mapping; SYNTHETIC-APERTURE RADAR; SPECTRAL LIBRARY; STRATIFICATION; PREDICTION; STORAGE; STOCKS;
D O I
10.3390/rs15235464
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite optical remote sensing (and the spectral vegetation indices) contributions to digital soil-mapping studies of soil organic carbon (SOC), few studies have used active radar remote sensing mission data like that from synthetic aperture radar (SAR) sensors to predict SOC. Bearing in mind the importance of SOC mapping for agricultural, ecological, and climate interests and also the recently developed methods for vegetation monitoring using Sentinel-1 SAR data, in this work, we aimed to take advantage of the high operationality of Sentinel-1 imaging to test the accuracy of SOC prediction at different soil depths using machine learning systems. Using linear, nonlinear, and tree regression-based methods, it was possible to predict the SOC content of soils from western Bahia, Brazil, a region with predominantly sandy soils, using as explanatory variables the SAR vegetation indices. The models fed with SAR sensor polarizations and vegetation indices produced more accurate results for the topsoil layers (0-5 cm and 5-10 cm in depth). In these superficial layers, the models achieved an RMSE in the order of 5.0 g kg-1 and an R2 ranging from 0.16 to 0.24, therefore explaining about 20% of SOC variability using only Sentinel-1 predictors.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery
    Pramudya, Fabian Surya
    Pan, Jiayi
    Devlin, Adam Thomas
    Lin, Hui
    [J]. REMOTE SENSING, 2021, 13 (01) : 1 - 18
  • [2] Dual-polarization vegetation indices for the Sentinel-1 sar sensor and its correlation to forest biomass from Atlantic Forest fragments
    dos Santos, Erli Pinto
    Santos, Isabel Caligiorne
    Bussinguer, Jales de Freitas
    Cruz, Renata Ranielly Pedroza
    do Amaral, Cibele Hummel
    da Silva, Demetrius David
    Moreira, Michel Castro
    [J]. CERNE, 2024, 30
  • [3] Spatiotemporal variations of wetland backscatter: The role of water depth and vegetation characteristics in Sentinel-1 dual-polarization SAR observations
    Zhang, Boya
    Wdowinski, Shimon
    Gann, Daniel
    Hong, Sang-Hoon
    Sah, Jay
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 270
  • [4] Sentinel-1 Dual-Polarization SAR Images Despeckling Network Based on Unsupervised Learning
    Li, Jie
    Lin, Liupeng
    He, Mange
    He, Jiang
    Yuan, Qiangqiang
    Shen, Huanfeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Automated Rain Detection by Dual-Polarization Sentinel-1 Data
    Zhao, Yuan
    Longepe, Nicolas
    Mouche, Alexis
    Husson, Romain
    [J]. REMOTE SENSING, 2021, 13 (16)
  • [6] Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery
    Taghadosi, Mohammad Mahdi
    Hasanlou, Mahdi
    Eftekhari, Kamran
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (01) : 237 - 252
  • [7] Target decomposition using dual-polarization sentinel-1 SAR data: Study on crop growth analysis
    Salma, Shaik
    Keerthana, N.
    Dodamani, B. M.
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 28
  • [8] RETRIEVAL OF TYPHOON WIND SPEED FROM SENTINEL-1 DUAL-POLARIZATION SAR BASED ON MACHINE LEARNING
    Zhao, Xintong
    Yan, Qiushuang
    Fan, Chenqing
    Zhang, Jie
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4068 - 4071
  • [9] ADVANCEMENTS FOR SENTINEL-1 BASED VESSEL MONITORING: DUAL-POLARIZATION DETECTION AND SAR-BASED COASTLINE DETECTION
    Pelich, Ramona
    Chini, Marco
    Hostache, Renaud
    Matgen, Patrick
    Lopez-Martinez, Carlos
    Nuevo, Miguel
    Ries, Philippe
    Eiden, Gerd
    Croi, Willibald
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5030 - 5032
  • [10] Biomass Estimation for Semiarid Vegetation and Mine Rehabilitation Using Worldview-3 and Sentinel-1 SAR Imagery
    Bao, Nisha
    Li, Wenwen
    Gu, Xiaowei
    Liu, Yanhui
    [J]. REMOTE SENSING, 2019, 11 (23)