On the Erdos-Lax inequality and its various generalizations concerning polynomials

被引:0
|
作者
Mir, Abdullah [1 ]
Hussain, Adil [1 ]
Wagay, Firdose Ahmad [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, India
关键词
Bounded domain; Erdos-Lax inequality; Zeros; OPERATOR PRESERVING INEQUALITIES;
D O I
10.1007/s12215-022-00785-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If P(z) is a polynomial of degree n having no zeros in vertical bar z vertical bar < 1, then Erdos conjectured and later Lax (Bull. Amer. Math. Soc. 50 (1944) 509-513) proved that max(vertical bar z vertical bar=1) vertical bar P'(z)vertical bar <= n/2 max(vertical bar z vertical bar=1) vertical bar P(z)vertical bar. Govil (Proc. Nat. Acad. Sci. (India) 50(A) (1980) 50-52) established a generalization of this inequality and proved that if P(z) not equal 0 in vertical bar z vertical bar < k, k <= 1 and Q(z) = z(n )<(P(1/z))over bar>, then max(vertical bar z vertical bar=1) vertical bar P'(z)vertical bar <= n/1 + k(n) max(vertical bar z vertical bar=1) vertical bar P(z)vertical bar, provided vertical bar P'(z)vertical bar and vertical bar'(z)vertical bar attain maximum at the same point on vertical bar z vertical bar = 1. In this work, we establish some new inequalities that relate the uniform norm of a polynomial and its polar derivative, while taking into account the placement of the zeros and the extremal coefficients of the polynomial. The obtained results provide various generalizations and refinements of the above inequalities and related results.
引用
收藏
页码:2025 / 2037
页数:13
相关论文
共 50 条
  • [1] ON THE ERDOS-LAX INEQUALITY CONCERNING POLYNOMIALS
    Milovanovic, Gradimir, V
    Mir, Abdullah
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (04): : 1499 - 1508
  • [2] On the Erdos-Lax inequality concerning polynomials
    Mir, Abdullah
    Hussain, Imtiaz
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (10) : 1055 - 1062
  • [3] On Erdos-Lax Inequality Concerning Polynomials
    Wani, Irfan Ahmad
    Nazir, Ishfaq
    Mir, Mohammad Ibrahim
    FILOMAT, 2022, 36 (18) : 6123 - 6128
  • [4] A note on the Erdos-Lax inequality concerning polynomials
    Mir, Abdullah
    Fayaz, Tahir
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 936 - 945
  • [5] Sharpening of Erdos-Lax Inequality for Polynomials
    Rather, N. A.
    Bhat, Aijaz
    Shafi, M.
    RUSSIAN MATHEMATICS, 2023, 67 (02) : 65 - 72
  • [6] On the Erdos-Lax Inequality
    Kumara, Prasanna
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1081 - 1085
  • [7] On the Erdös-Lax inequality and its various generalizations concerning polynomials
    Abdullah Mir
    Adil Hussain
    Firdose Ahmad Wagay
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2025 - 2037
  • [8] On Erdos-Lax and Turan-type inequalities for polynomials
    Mir, Mohammad Ibrahim
    Nazir, Ishfaq
    Wani, Irfan Ahmad
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [9] On Bernstein and Erdos-Lax's inequalities for quaternionic polynomials
    Gal, Sorin G.
    Sabadini, Irene
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (01) : 5 - 9
  • [10] ON ERDOS-LAX THEOREM
    CHAN, TN
    MALIK, MA
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1983, 92 (03): : 191 - 193