Deciphering protein interaction network dynamics with a machine learning-based framework

被引:1
|
作者
Reed, Tavis J. [1 ]
Criste, Ileana M. [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.1038/s41592-024-02180-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We developed Tapioca, an integrative ensemble machine learning-based framework, to accurately predict global protein-protein interaction network dynamics. Tapioca enabled the characterization of host regulation during reactivation from latency of an oncogenic virus. Introducing an interactome homology analysis method, we identified a proviral host factor with broad relevance for herpesviruses.
引用
收藏
页码:387 / 388
页数:2
相关论文
共 50 条
  • [2] A Machine Learning-Based Framework to Estimate the Lifetime of Network Line Cards
    Herrera, Juan Luis
    Polverini, Marco
    Galan-Jimenez, Jaime
    [J]. NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [3] An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System
    De Carvalho Bertoli, Gustavo
    Pereira Junior, Lourenco Alves
    Saotome, Osamu
    Dos Santos, Aldri L.
    Verri, Filipe Alves Neto
    Marcondes, Cesar Augusto Cavalheiro
    Barbieri, Sidnei
    Rodrigues, Moises S.
    Parente De Oliveira, Jose M.
    [J]. IEEE ACCESS, 2021, 9 : 106790 - 106805
  • [4] Current Status of Machine Learning-Based Methods for Identifying Protein-Protein Interaction Sites
    Wang, Bing
    Sun, Wenlong
    Zhang, Jun
    Chen, Peng
    [J]. CURRENT BIOINFORMATICS, 2013, 8 (02) : 177 - 182
  • [5] An effective machine learning-based model for the prediction of protein–protein interaction sites in health systems
    Muhammad Tahir
    Fazlullah Khan
    Maqsood Hayat
    Mohammad Dahman Alshehri
    [J]. Neural Computing and Applications, 2024, 36 : 65 - 75
  • [6] Framework for Testing Robustness of Machine Learning-Based Classifiers
    Chuah, Joshua
    Kruger, Uwe
    Wang, Ge
    Yan, Pingkun
    Hahn, Juergen
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [7] A machine learning-based framework for modeling transcription elongation
    Feng, Peiyuan
    Xiao, An
    Fang, Meng
    Wan, Fangping
    Li, Shuya
    Lang, Peng
    Zhao, Dan
    Zeng, Jianyang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (06)
  • [8] Machine Learning-Based Framework for the Analysis of Project Viability
    Tshimula, Jean Marie
    Togashi, Atsushi
    [J]. PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS), 2018, : 80 - 84
  • [9] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    [J]. BMC Bioinformatics, 24
  • [10] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)