Negative Poisson's Ratios of Layered Materials by First-Principles High-Throughput Calculations

被引:1
|
作者
Zhao, Hanzhang [1 ]
Cai, Yuxin [1 ]
Liang, Xinghao [1 ]
Zhou, Kun [1 ]
Zou, Hongshuai [1 ]
Zhang, Lijun [1 ]
机构
[1] Jilin Univ, Coll Mat Sci & Engn, State Key Lab Integrated Optoelect, MOE,Key Lab Automobile Mat, Changchun 130012, Peoples R China
关键词
SILICON DIOXIDE; 2D MATERIAL; MONOLAYER; TRANSPORT; DESIGN;
D O I
10.1088/0256-307X/40/12/124601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Auxetic two-dimensional (2D) materials, known from their negative Poisson's ratios (NPRs), exhibit the unique property of expanding (contracting) longitudinally while being laterally stretched (compressed), contrary to typical materials. These materials offer improved mechanical characteristics and hold great potential for applications in nanoscale devices such as sensors, electronic skins, and tissue engineering. Despite their promising attributes, the availability of 2D materials with NPRs is limited, as most 2D layered materials possess positive Poisson's ratios. In this study, we employ first-principles high-throughput calculations to systematically explore Poisson's ratios of 40 commonly used 2D monolayer materials, along with various bilayer structures. Our investigation reveals that BP, GeS and GeSe exhibit out-of-plane NPRs due to their hinge-like puckered structures. For 1T-type transition metal dichalcogenides such as MX 2 (M = Mo, W; X = S, Se, Te) and transition metal selenides/halides the auxetic behavior stems from a combination of geometric and electronic structural factors. Notably, our findings unveil V2O5 as a novel material with out-of-plane NPR. This behavior arises primarily from the outward movement of the outermost oxygen atoms triggered by the relaxation of strain energy under uniaxial tensile strain along one of the in-plane directions. Furthermore, our computations demonstrate that Poisson's ratio can be tuned by varying the bilayer structure with distinct stacking modes attributed to interlayer coupling disparities. These results not only furnish valuable insights into designing 2D materials with a controllable NPR but also introduce V2O5 as an exciting addition to the realm of auxetic 2D materials, holding promise for diverse nanoscale applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Negative Poisson's Ratios of Layered Materials by First-Principles High-Throughput Calculations
    赵汉章
    蔡雨欣
    梁兴昊
    周琨
    邹洪帅
    张立军
    Chinese Physics Letters, 2023, (12) : 91 - 101
  • [2] Negative Poisson's ratios in few-layer orthorhombic arsenic: First-principles calculations
    Han, Jianwei
    Xie, Jiafeng
    Zhang, Zhiya
    Yang, Dezheng
    Si, Mingsu
    Xue, Desheng
    APPLIED PHYSICS EXPRESS, 2015, 8 (04)
  • [3] Application of high-throughput first-principles calculations in ceramic innovation
    Liu, Bin
    Zhao, Juanli
    Liu, Yuchen
    Xi, Jianqi
    Li, Qian
    Xiang, Huimin
    Zhou, Yanchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 88 : 143 - 157
  • [4] Application of high-throughput first-principles calculations in ceramic innovation
    Bin Liu
    Juanli Zhao
    Yuchen Liu
    Jianqi Xi
    Qian Li
    Huimin Xiang
    Yanchun Zhou
    JournalofMaterialsScience&Technology, 2021, 88 (29) : 143 - 157
  • [5] Insights into oxygen vacancies from high-throughput first-principles calculations
    Kumagai, Yu
    Tsunoda, Naoki
    Takahashi, Akira
    Oba, Fumiyasu
    PHYSICAL REVIEW MATERIALS, 2021, 5 (12):
  • [6] High-throughput predictions of two-dimensional dielectrics with first-principles calculations
    Du, Gege
    Li, Chunhui
    Shan, Lei
    Cheng, Long
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [7] High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics
    Huo, Zhengbao
    Wei, Su-Huai
    Yin, Wan-Jian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (47)
  • [8] Ordered phases in ruthenium binary alloys from high-throughput first-principles calculations
    Jahnatek, Michal
    Levy, Ohad
    Hart, Gus L. W.
    Nelson, Lance J.
    Chepulskii, Roman V.
    Xue, J.
    Curtarolo, Stefano
    PHYSICAL REVIEW B, 2011, 84 (21)
  • [9] Energy gaps of graphene clusters: the first-principles calculations based on high-throughput screening
    Qu, Liang
    Liu, Zhaoqing
    Yang, Xiaobao
    MOLECULAR SIMULATION, 2017, 43 (07) : 558 - 562
  • [10] High-Throughput First-Principles Calculations and Machine Learning of Grain Boundary Segregation in Metals
    Scheiber, Daniel
    Razumovskiy, Vsevolod
    Peil, Oleg
    Romaner, Lorenz
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (19)