Characterizations of the metric and generalized metric projections on subspaces of Banach spaces

被引:3
|
作者
Khan, Akhtar A. [1 ]
Li, Jinlu [2 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, 85 Lomb Mem Dr, Rochester, NY 14623 USA
[2] Shawnee State Univ, Dept Math, Portsmouth, OH 45662 USA
关键词
Generalized projection; Generalized metric projection; Generalized proximal set; Generalized Chebyshev set; Generalized identical points; Orthogonal subspaces; VARIATIONAL-INEQUALITIES; CONTINUITY; CONVEX; DIFFERENTIABILITY; OPERATOR;
D O I
10.1016/j.jmaa.2023.127865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variational principles of the metric projection onto closed and convex sets are commonly used as the basis for characterizations of metric projections onto subspaces of Hilbert spaces. However, it is important to realize that the variational principles do not hold as necessary and sufficient conditions in general Banach spaces to characterize the metric projection and its related extensions. This technical handicap prevents the study of metric projection onto subspaces of general Banach spaces from being fully explored. Motivated by this existing lacuna in the literature, we investigate the metric projection and the generalized metric projection onto subspaces of general Banach spaces in this study. Focusing on concrete Banach spaces, we show that even though there are no general variational principles in such spaces for the projection onto subspaces, specific elements satisfy a variational characterization. We provide concrete examples to illustrate various notions of projections in general Banach spaces.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Continuity of generalized metric projections in Banach spaces
    Zihou Zhang
    Yu Zhou
    Chunyan Liu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 95 - 102
  • [2] Continuity of generalized metric projections in Banach spaces
    Zhang, Zihou
    Zhou, Yu
    Liu, Chunyan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 95 - 102
  • [3] METRIC CHARACTERIZATIONS OF BANACH SPACES
    VALENTINE, JE
    WAYMENT, SG
    COLLOQUIUM MATHEMATICUM, 1973, 27 (01) : 89 - 94
  • [4] EXPECTATION IN METRIC SPACES AND CHARACTERIZATIONS OF BANACH SPACES
    Bator, Artur
    Zieba, Wieslaw
    DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 901 - 908
  • [5] Approximating properties of metric and generalized metric projections in uniformly convex and uniformly smooth Banach spaces
    Khan, Akhtar A.
    Li, Jinlu
    JOURNAL OF APPROXIMATION THEORY, 2024, 297
  • [6] NEW METRIC CHARACTERIZATIONS OF BANACH-SPACES
    ANDALAFTE, EZ
    FREESE, RW
    HOUSTON JOURNAL OF MATHEMATICS, 1985, 11 (02): : 147 - 150
  • [7] Diagonal characterizations of generalized metric spaces
    Wisloski, Gregory A.
    Heath, Robert W.
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (02): : 511 - 518
  • [8] Metric Characterizations of Some Classes of Banach Spaces
    Ostrovskii, Mikhail
    HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, COMPLEX ANALYSIS, BANACH SPACES, AND OPERATOR THEORY, VOL 1: CELEBRATING CORA SADOSKY'S LIFE, 2016, 4 : 307 - 347
  • [9] ON METRIC CHARACTERIZATIONS OF SOME CLASSES OF BANACH SPACES
    Ostrovskii, Mikhail I.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (06): : 775 - 784
  • [10] CHARACTERIZATIONS OF SOME GENERALIZED METRIC SPACES
    NAGATA, JI
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 838 - &