Improved differential evolution with dynamic mutation parameters

被引:0
|
作者
Lin, Yifeng [1 ]
Yang, Yuer [1 ]
Zhang, Yinyan [1 ,2 ]
机构
[1] Jinan Univ, Coll Cyber Secur, Guangzhou 511436, Peoples R China
[2] Pazhou Lab, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential evolution (DE) Algorithm; Global optimization; Scheme optimization; Test function; ALGORITHM; OPTIMIZATION;
D O I
10.1007/s00500-023-09080-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) algorithms tend to be limited to local optimization when solving complex optimization problems. Different iteration schemes lead to different convergence speeds. In this paper, we mainly use the dynamic mutation parameter FS to improve the DE algorithm. Based on two ideas, a total of seven DE schemes are proposed to optimize the DE algorithm. We test the performance of the improved DE scheme on 56 test functions. Experiments show that the improved DE algorithm is better than the baseline DE algorithm in terms of accuracy, convergence and8 convergence speed.
引用
收藏
页码:17923 / 17941
页数:19
相关论文
共 50 条
  • [1] Improved differential evolution with dynamic mutation parameters
    Yifeng Lin
    Yuer Yang
    Yinyan Zhang
    [J]. Soft Computing, 2023, 27 : 17923 - 17941
  • [2] Differential Evolution Improved with Adaptive Control Parameters and Double Mutation Strategies
    Liu, Jun
    Yin, Xiaoming
    Gu, Xingsheng
    [J]. THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 186 - 198
  • [3] Differential evolution with improved elite archive mutation and dynamic parameter adjustment
    Lu, Zengquan
    Zhang, Lilun
    Wang, Dezhi
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9347 - S9356
  • [4] Differential evolution with improved elite archive mutation and dynamic parameter adjustment
    Zengquan Lu
    Lilun Zhang
    Dezhi Wang
    [J]. Cluster Computing, 2019, 22 : 9347 - 9356
  • [5] Differential Evolution with Improved Mutation Strategy
    Wan, Shuzhen
    Xiong, Shengwu
    Kou, Jialiang
    Liu, Yi
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 : 431 - 438
  • [6] Differential evolution with adaptive dynamic mutation & second mutation
    Yu, Guo-Yan
    Li, Peng
    He, Zhen
    Wang, Xiao-Zhen
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2010, 16 (05): : 987 - 993
  • [7] Improved differential evolution algorithm based on dynamic adaptive strategies and control parameters
    Department of Electrical Engineering and Automation, Shanghai Maritime University, Shanghai, China
    [J]. Int. J. Control Autom, 9 (81-96):
  • [8] A New Differential Evolution with Improved Mutation Strategy
    Bhowmik, Pavel
    Das, Sauvik
    Konar, Amit
    Das, Swagatam
    Nagar, Atulya K.
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [9] An efficient differential evolution with fitness-based dynamic mutation strategy and control parameters
    Gupta, Shubham
    Su, Rong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [10] An Improved Differential Evolution with Efficient Parameters Adjustment
    Hsieh, Sheng-Ta
    Su, Tse
    Wu, Huang-Lyu
    [J]. 2013 FIRST INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2013, : 627 - 629