Overview of High-Dimensional Measurement Error Regression Models

被引:1
|
作者
Luo, Jingxuan [1 ]
Yue, Lili [2 ]
Li, Gaorong [1 ]
机构
[1] Beijing Normal Univ, Sch Stat, Beijing 100875, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
convex optimization; estimation; high-dimensional data; hypothesis testing; measurement error; variable selection; LIKELIHOOD CONFIDENCE REGION; GENERALIZED LINEAR-MODELS; VARIABLE SELECTION; NONPARAMETRIC REGRESSION; DANTZIG SELECTOR; SPARSE RECOVERY; ESTIMATORS; INFERENCE; TESTS; REGULARIZATION;
D O I
10.3390/math11143202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
High-dimensional measurement error data are becoming more prevalent across various fields. Research on measurement error regression models has gained momentum due to the risk of drawing inaccurate conclusions if measurement errors are ignored. When the dimension p is larger than the sample size n, it is challenging to develop statistical inference methods for high-dimensional measurement error regression models due to the existence of bias, nonconvexity of the objective function, high computational cost and many other difficulties. Over the past few years, some works have overcome the aforementioned difficulties and proposed several novel statistical inference methods. This paper mainly reviews the current development on estimation, hypothesis testing and variable screening methods for high-dimensional measurement error regression models and shows the theoretical results of these methods with some directions worthy of exploring in future research.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Balanced estimation for high-dimensional measurement error models
    Zheng, Zemin
    Li, Yang
    Yu, Chongxiu
    Li, Gaorong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 126 : 78 - 91
  • [2] Covariate Selection in High-Dimensional Generalized Linear Models With Measurement Error
    Sorensen, Oystein
    Hellton, Kristoffer Herland
    Frigessi, Arnoldo
    Thoresen, Magne
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 739 - 749
  • [3] Logistic regression error-in-covariate models for longitudinal high-dimensional covariates
    Park, Hyung
    Lee, Seonjoo
    STAT, 2019, 8 (01):
  • [4] Robust linear regression for high-dimensional data: An overview
    Filzmoser, Peter
    Nordhausen, Klaus
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
  • [5] COCOLASSO FOR HIGH-DIMENSIONAL ERROR-IN-VARIABLES REGRESSION
    Datta, Abhirup
    Zou, Hui
    ANNALS OF STATISTICS, 2017, 45 (06): : 2400 - 2426
  • [6] Variance estimation for high-dimensional regression models
    Spokoiny, V
    JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 82 (01) : 111 - 133
  • [7] Localizing Changes in High-Dimensional Regression Models
    Rinaldo, Alessandro
    Wang, Daren
    Wen, Qin
    Willett, Rebecca
    Yu, Yi
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [8] ON HIGH-DIMENSIONAL POISSON MODELS WITH MEASUREMENT ERROR: HYPOTHESIS TESTING FOR NONLINEAR NONCONVEX OPTIMIZATION
    Jiang, Fei
    Zhou, Yeqing
    Liu, Jianxuan
    Ma, Yanyuan
    ANNALS OF STATISTICS, 2023, 51 (01): : 233 - 259
  • [9] Variable selection for proportional hazards models with high-dimensional covariates subject to measurement error
    Chen, Baojiang
    Yuan, Ao
    Yi, Grace Y.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 397 - 420
  • [10] Estimation of high-dimensional seemingly unrelated regression models
    Tan, Lidan
    Chiong, Khai Xiang
    Moon, Hyungsik Roger
    ECONOMETRIC REVIEWS, 2021, 40 (09) : 830 - 851