Resolution Calculi for Non-normal Modal Logics

被引:1
|
作者
Pattinson, Dirk [1 ]
Olivetti, Nicola [2 ]
Nalon, Claudia [3 ]
机构
[1] Australian Natl Univ, Sch Comp, Canberra, ACT, Australia
[2] Aix Marseille Univ, CNRS, LIS, Marseille, France
[3] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
关键词
Modal Logic; Automated Reasoning; Resolution;
D O I
10.1007/978-3-031-43513-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present resolution calculi for the cube of classical non-normal modal logics. The calculi are based on a simple clausal form that comprises both local and global clauses. Any formula can be efficiently transformed into a small set of clauses. The calculi contain uniform rules and provide a decision procedure for all logics. Their completeness is based on a new and crucial notion of inconsistency predicate, needed to ensure the usual closure properties of maximal consistent sets. As far as we know the calculi presented here are the first resolution calculi for this class of logics.
引用
收藏
页码:322 / 341
页数:20
相关论文
共 50 条
  • [1] Sequent Calculi and Interpolation for Non-Normal Modal and Deontic Logics
    Orlandelli, Eugenio
    LOGIC AND LOGICAL PHILOSOPHY, 2021, 30 (01) : 139 - 183
  • [2] Labelled Sequent Calculi for Lewis' Non-normal Propositional Modal Logics
    Tesi, Matteo
    STUDIA LOGICA, 2021, 109 (04) : 725 - 757
  • [3] Labelled Sequent Calculi for Lewis’ Non-normal Propositional Modal Logics
    Matteo Tesi
    Studia Logica, 2021, 109 : 725 - 757
  • [4] Countermodel Construction via Optimal Hypersequent Calculi for Non-normal Modal Logics
    Dalmonte, Tiziano
    Lellmann, Bjoern
    Olivetti, Nicola
    Pimentel, Elaine
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2020), 2020, 11972 : 27 - 46
  • [5] Hypersequent calculi for non-normal modal and deontic logics: countermodels and optimal complexity
    Dalmonte, Tiziano
    Lellmann, Bjorn
    Olivetti, Nicola
    Pimentel, Elaine
    JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (01) : 67 - 111
  • [6] Non-Normal Modal Description Logics
    Dalmonte, Tiziano
    Mazzullo, Andrea
    Ozaki, Ana
    Troquard, Nicolas
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2023, 2023, 14281 : 306 - 321
  • [7] HYPNO: Theorem Proving with Hypersequent Calculi for Non-normal Modal Logics (System Description)
    Dalmonte, Tiziano
    Olivetti, Nicola
    Pozzato, Gian Luca
    AUTOMATED REASONING, PT II, 2020, 12167 : 378 - 387
  • [8] Quantification in Some Non-normal Modal Logics
    Calardo, Erica
    Rotolo, Antonino
    JOURNAL OF PHILOSOPHICAL LOGIC, 2017, 46 (05) : 541 - 576
  • [9] Labelled tableaux for non-normal modal logics
    Governatori, G
    Luppi, A
    AI(ASTERISK)IA 99: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2000, 1792 : 119 - 130
  • [10] Quantification in Some Non-normal Modal Logics
    Erica Calardo
    Antonino Rotolo
    Journal of Philosophical Logic, 2017, 46 : 541 - 576