Unsupervised Deep Learning Approach for In-Vehicle Intrusion Detection System

被引:5
|
作者
Narasimhan, Harini [1 ]
Ravi, Vinayakumar [2 ]
Mohammad, Nazeeruddin [2 ]
机构
[1] Indian Inst Technol Kanpur, Kanpur, India
[2] Prince Mohammad Bin Fahd Univ, Dhahran, Saudi Arabia
关键词
Feature extraction; Intrusion detection; Deep learning; Protocols; Wireless sensor networks; Convolutional neural networks; Consumer electronics;
D O I
10.1109/MCE.2021.3116923
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The controller area network (CAN) is a standard communication protocol used for sending messages between electronic control unit of a modern automotive system. CAN protocol does not have any in-built security mechanisms and, hence, various attacks can affect the vehicle and cause life threats to the passengers. This article presents an unsupervised deep learning architecture for detecting intrusions on a CAN bus. The CAN intrusion detection system (IDS) architecture has an autoencoder that helps to learn the optimal features from CAN packets to differentiate between the normal and attacks. The optimal features are passed as input to the Gaussian mixture model, which helps us to cluster the CAN network packet data samples into normal and attacks. A detailed analysis of the proposed architecture is done on the CAN IDS dataset. To develop a robust CAN IDS system and achieve generalization, the proposed method is evaluated on the other two computer network intrusion datasets and a wireless sensor network dataset. In all the experiments, the proposed method has performed better than the existing unsupervised method and mainly showed a performance gain of 6.4% on the CAN IDS dataset. This indicates that the proposed method is robust and generalizable across detecting various attacks in a CAN bus and most importantly, the method can be used in real time to effectively monitor the CAN network traffic to proactively alert possible attacks.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [1] An Unsupervised Learning Approach for In-Vehicle Network Intrusion Detection
    Leslie, Nandi
    [J]. 2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [2] Intrusion detection system using deep learning for in-vehicle security
    Zhang, Jiayan
    Li, Fei
    Zhang, Haoxi
    Li, Ruxiang
    Li, Yalin
    [J]. AD HOC NETWORKS, 2019, 95
  • [3] Unsupervised intrusion detection system for in-vehicle communication networks
    Kabilan, N.
    Ravi, Vinayakumar
    Sowmya, V.
    [J]. JOURNAL OF SAFETY SCIENCE AND RESILIENCE, 2024, 5 (02): : 119 - 129
  • [4] A deep learning-based intrusion detection system for in-vehicle networks
    Alqahtani, Hamed
    Kumar, Gulshan
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [5] Intrusion detection system using SOEKS and deep learning for in-vehicle security
    Lulu Gao
    Fei Li
    Xiang Xu
    Yong Liu
    [J]. Cluster Computing, 2019, 22 : 14721 - 14729
  • [6] Intrusion detection system using SOEKS and deep learning for in-vehicle security
    Gao, Lulu
    Li, Fei
    Xu, Xiang
    Liu, Yong
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6): : 14721 - 14729
  • [7] An Effective In-Vehicle CAN Bus Intrusion Detection System Using CNN Deep Learning Approach
    Hossain, Md Delwar
    Inoue, Hiroyuki
    Ochiai, Hideya
    Fall, Doudou
    Kadobayashi, Youki
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [8] CANGuard: Practical Intrusion Detection for In-Vehicle Network via Unsupervised Learning
    Zhou, Wu
    Fu, Hao
    Kapoor, Shray
    [J]. 2021 ACM/IEEE 6TH SYMPOSIUM ON EDGE COMPUTING (SEC 2021), 2021, : 454 - 458
  • [9] Intrusion Detection for in-Vehicle Communication Networks: An Unsupervised Kohonen SOM Approach
    Santa Barletta, Vita
    Caivano, Danilo
    Nannavecchia, Antonella
    Scalera, Michele
    [J]. FUTURE INTERNET, 2020, 12 (07):
  • [10] Intrusion detection system for in-vehicle networks
    Hamada, Yoshihiro
    Inoue, Masayuki
    Adachi, Naoki
    Ueda, Hiroshi
    Miyashita, Yukihiro
    Hata, Yoichi
    [J]. SEI Technical Review, 2019, (88): : 76 - 81