Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair

被引:11
|
作者
Kokic, Goran [1 ,2 ]
Yakoub, George [3 ]
van den Heuvel, Diana [3 ]
Wondergem, Annelotte P. [3 ]
van der Meer, Paula J. [3 ]
van der Weegen, Yana [3 ]
Chernev, Aleksandar [4 ]
Fianu, Isaac [1 ]
Fokkens, Thornton J. [5 ]
Lorenz, Sonja [5 ]
Urlaub, Henning [4 ,6 ]
Cramer, Patrick [1 ]
Luijsterburg, Martijn S. [3 ]
机构
[1] Max Planck Inst Multidisciplinary Sci, Dept Mol Biol, Gottingen, Germany
[2] Odyssey Therapeut GmbH, Div Struct Biol & Prot Therapeut, Frankfurt, Germany
[3] Leiden Univ, Med Ctr, Dept Human Genet, Leiden, Netherlands
[4] Max Planck Inst Multidisciplinary Sci, Bioanalyt Mass Spectrometry, Gottingen, Germany
[5] Max Planck Inst Multidisciplinary Sci, Ubiquitin Signaling Spec Grp, Gottingen, Germany
[6] Univ Med Ctr Gottingen, Inst Clin Chem, Bioanalyt Grp, Gottingen, Germany
基金
欧洲研究理事会;
关键词
NUCLEOTIDE EXCISION-REPAIR; UV-SENSITIVE SYNDROME; ELONGATION-FACTOR; DNA DAMAGE; COMPLEX; PROTEIN; MECHANISM; SUBUNIT; LIGASE; UBIQUITINATION;
D O I
10.1038/s41594-023-01207-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR. Here the authors visualize the workings of ELOF1 in transcription-coupled DNA repair, showing that ELOF1 repositions repair factors on the surface of DNA damage-stalled RNA polymerase II to facilitate its ubiquitylation by the CRL4CSA E3 ligase and inactivation by UVSSA.
引用
收藏
页码:536 / 547
页数:38
相关论文
共 50 条
  • [1] Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair
    Goran Kokic
    George Yakoub
    Diana van den Heuvel
    Annelotte P. Wondergem
    Paula J. van der Meer
    Yana van der Weegen
    Aleksandar Chernev
    Isaac Fianu
    Thornton J. Fokkens
    Sonja Lorenz
    Henning Urlaub
    Patrick Cramer
    Martijn S. Luijsterburg
    Nature Structural & Molecular Biology, 2024, 31 : 536 - 547
  • [2] ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation
    van der Weegen, Yana
    de Lint, Klaas
    van den Heuvel, Diana
    Nakazawa, Yuka
    Mevissen, Tycho E. T.
    van Schie, Janne J. M.
    San Martin Alonso, Marta
    Boer, Daphne E. C.
    Gonzalez-Prieto, Roman
    Narayanan, Ishwarya V.
    Klaassen, Noud H. M.
    Wondergem, Annelotte P.
    Roohollahi, Khashayar
    Dorsman, Josephine C.
    Hara, Yuichiro
    Vertegaal, Alfred C. O.
    de Lange, Job
    Walter, Johannes C.
    Noordermeer, Sylvie M.
    Ljungman, Mats
    Ogi, Tomoo
    Wolthuis, Rob M. F.
    Luijsterburg, Martijn S.
    NATURE CELL BIOLOGY, 2021, 23 (06) : 595 - 607
  • [3] ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation
    Yana van der Weegen
    Klaas de Lint
    Diana van den Heuvel
    Yuka Nakazawa
    Tycho E. T. Mevissen
    Janne J. M. van Schie
    Marta San Martin Alonso
    Daphne E. C. Boer
    Román González-Prieto
    Ishwarya V. Narayanan
    Noud H. M. Klaassen
    Annelotte P. Wondergem
    Khashayar Roohollahi
    Josephine C. Dorsman
    Yuichiro Hara
    Alfred C. O. Vertegaal
    Job de Lange
    Johannes C. Walter
    Sylvie M. Noordermeer
    Mats Ljungman
    Tomoo Ogi
    Rob M. F. Wolthuis
    Martijn S. Luijsterburg
    Nature Cell Biology, 2021, 23 : 595 - 607
  • [4] Structural basis for bacterial transcription-coupled DNA repair
    Deaconescu, AM
    Chambers, AL
    Smith, AJ
    Nickels, BE
    Hochschild, A
    Savery, NJ
    Darst, SA
    CELL, 2006, 124 (03) : 507 - 520
  • [5] RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
    Smith, AJ
    Savery, NJ
    NUCLEIC ACIDS RESEARCH, 2005, 33 (02) : 755 - 764
  • [6] Structural basis for the initiation of eukaryotic transcription-coupled DNA repair
    Jun Xu
    Indrajit Lahiri
    Wei Wang
    Adam Wier
    Michael A. Cianfrocco
    Jenny Chong
    Alissa A. Hare
    Peter B. Dervan
    Frank DiMaio
    Andres E. Leschziner
    Dong Wang
    Nature, 2017, 551 : 653 - 657
  • [7] Structural basis for the initiation of eukaryotic transcription-coupled DNA repair
    Xu, Jun
    Lahiri, Indrajit
    Wang, Wei
    Wier, Adam
    Cianfrocco, Michael A.
    Chong, Jenny
    Hare, Alissa A.
    Dervan, Peter B.
    DiMaio, Frank
    Leschziner, Andres E.
    Wang, Dong
    NATURE, 2017, 551 (7682) : 653 - +
  • [8] Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: Implications for Cockayne's syndrome
    Lommel, L
    Bucheli, ME
    Sweder, KS
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) : 9088 - 9092
  • [9] Coordination of transcription-coupled repair and repair-independent release of lesion-stalled RNA polymerase II
    Zhu, Yongchang
    Zhang, Xiping
    Gao, Meng
    Huang, Yanchao
    Tan, Yuanqing
    Parnas, Avital
    Wu, Sizhong
    Zhan, Delin
    Adar, Sheera
    Hu, Jinchuan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair
    Chunli Yan
    Thomas Dodd
    Jina Yu
    Bernice Leung
    Jun Xu
    Juntaek Oh
    Dong Wang
    Ivaylo Ivanov
    Nature Communications, 12