Advancement in half-Heusler thermoelectric materials and strategies to enhance the thermoelectric performance

被引:24
|
作者
Ojha, Abhigyan [1 ]
Sabat, Rama Krushna [1 ]
Bathula, Sivaiah [1 ]
机构
[1] Indian Inst Technol IIT Bhubaneswar, Sch Minerals Met & Mat Engn, Bhubaneswar 752050, Odisha, India
关键词
Thermoelectrics; Half-Heusler; Nanostructuring; Iso-electronic doping; Modulation doping; Energy filtering; Resonant levels; FIGURE-OF-MERIT; RECENT PROGRESS; TRANSPORT-PROPERTIES; TINISN; HF; SOLUBILITY; COMPOUND; ZRNISN; PHASES; BAND;
D O I
10.1016/j.mssp.2023.107996
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The large carbon footprint created during the production of conventional power by using coal and the exhaust of gasoline engines marks climate change as one of the world's most urgent concerns today. Moreover, half of the total heat energy produced globally is wasted due to thermodynamic limitations. Thermoelectric (TE) materialsbased devices convert heat into clean/green energy. Additionally, TE devices are environment-safe, have no moving components, and require no maintenance. However, these devices exhibit poor TE efficiency due to poor material performance and thermal stability. We have critically reviewed the Half-Heusler (HH)-based thermoelectric materials in this work. Among the numerous state-of-the-art TE materials, the HH compounds have been deliberated as potential candidate materials worldwide due to their narrow band gap, high substitutability, improved contact engineering, and high thermal stability. However, these materials encounter high thermal conductivity. Thus, in the past, Full-Heusler (FH) and HH phase mixing led to an impressive thermoelectric performance by dramatically lowering thermal conductivity, enabling the realization of the high thermoelectric performance of HH compounds using both in-situ and ex-situ composite techniques. Conversely, the nanostructuring (Phonon-Glass and Electron-Crystal concepts) of the materials enhances the grain boundary/interface density, further increasing the phonon scattering and decreasing the thermal conductivity of the TE materials. The current report also critically reviewed the HH materials' thermal properties and zT of various preliminary and cutting-edge TE materials. Also, the concept of double-half-Heusler has been incorporated. Moreover, the challenges associated with HH-based TE materials have been discussed extensively. Lastly, strategies for making HH materials with high thermoelectric performance have been suggested in this review. These include isoelectronic doping, aliovalent doping, modulation doping, energy filtering, resonant levels, and nanostructuring.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Half-Heusler thermoelectric materials
    Xia, Kaiyang
    Hu, Chaoliang
    Fu, Chenguang
    Zhao, Xinbing
    Zhu, Tiejun
    APPLIED PHYSICS LETTERS, 2021, 118 (14)
  • [2] Half-Heusler thermoelectric materials: NMR studies
    Tian, Yefan
    Ghassemi, Nader
    Ren, Wuyang
    Zhu, Hangtian
    Li, Shan
    Zhang, Qian
    Wang, Zhiming
    Ren, Zhifeng
    Ross, Joseph H., Jr.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (05)
  • [3] New thermoelectric materials with half-Heusler structure
    Huang, XY
    Xu, Z
    Chen, LD
    JOURNAL OF INORGANIC MATERIALS, 2004, 19 (01) : 25 - 30
  • [4] Recent progress in half-Heusler thermoelectric materials
    Huang, Lihong
    Zhang, Qinyong
    Yuan, Bo
    Lai, Xiang
    Yan, Xiao
    Ren, Zhifeng
    MATERIALS RESEARCH BULLETIN, 2016, 76 : 107 - 112
  • [5] High performance p-type half-Heusler thermoelectric materials
    Yu, Junjie
    Xia, Kaiyang
    Zhao, Xinbing
    Zhu, Tiejun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (11)
  • [6] Prediction of improved thermoelectric performance by ordering in double half-Heusler materials
    Guo, Shuping
    Liu, Zihang
    Feng, Zhenzhen
    Jia, Tiantian
    Anand, Shashwat
    Snyder, G. Jeffrey
    Zhang, Yongsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (44) : 23590 - 23598
  • [7] Antimonides with the half-Heusler structure: New thermoelectric materials
    Mastronardi, K
    Young, D
    Wang, CC
    Khalifah, P
    Cava, RJ
    Ramirez, AP
    APPLIED PHYSICS LETTERS, 1999, 74 (10) : 1415 - 1417
  • [8] Selective Laser Melting of Half-Heusler Thermoelectric Materials
    Zhang, Haidong
    Wang, Shanyu
    Taylor, Patrick J.
    Yang, Jihui
    LeBlanc, Saniya
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS VIII, 2018, 10663
  • [9] Antimonides with the half-Heusler structure: New thermoelectric materials
    Department of Chemistry, Princeton Materials Institute, Princeton University, Princeton, NJ 08540, United States
    不详
    Appl Phys Lett, 10 (1415-1417):
  • [10] Zintl-chemistry for half-Heusler thermoelectric materials
    Snyder, G. Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250