Data-driven modal analysis of nonlinear quantities in turbulent plasmas using multi-field singular value decomposition

被引:1
|
作者
Yatomi, Go [1 ]
Nakata, Motoki [1 ,2 ,3 ]
Sasaki, Makoto [4 ]
机构
[1] Grad Univ Adv Studies, Dept Fus Sci, Toki, Gifu 5095292, Japan
[2] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Japan Sci & Technol Agcy, PRESTO, 418 Honcho, Kawaguchishi, Saitama 3320012, Japan
[4] Nihon Univ, Coll Ind technol, Narashino 2758575, Japan
关键词
plasma turbulence; singular value decomposition; transport; ZONAL FLOWS;
D O I
10.1088/1361-6587/ace993
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nonlinear dynamics in the two-dimensional multi-component plasma turbulence described by the Hasegawa-Wakatani equation is investigated by using a data-driven modal analysis with the singular value decomposition (SVD). The conventional SVD is extended to 'multi-field SVD' which can decompose multiple turbulence fields simultaneously by a single set of orthonormal basis functions without imposing a priori scale separations. Then, in addition to the mode amplitude labeled by the singular value, the information on the phase relations in the nonlinear quantities such as a transport flux or a triad energy transfer is extracted in the mode space. Through applications to the two-dimensional plasma turbulence, it is revealed that the multi-field SVD can extract the dominant spatial structures for the turbulent transport and the nonlinear energy transfer, preserving the multi-scale nature of the original turbulent fields. It is also demonstrated that one can reduce the dimensionality or information using the multi-field SVD through comparisons with the conventional Fourier decomposition.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Analysis of Turbulence Driven Particle Transport in PANTA by Using Multi-Field Singular Value Decomposition
    Kodahara T.
    Sasaki M.
    Kawachi Y.
    Jajima Y.
    Kobayashi T.
    Yamada T.
    Arakawa H.
    Fujisawa A.
    [J]. Plasma and Fusion Research, 2023, 18
  • [2] Analysis of Turbulence Driven Particle Transport in PANTA by Using Multi-Field Singular Value Decomposition
    Kodahara, Takumi
    Sasaki, Makoto
    Kawachi, Yuichi
    Jajima, Yuki
    Kobayashi, Tatsuya
    Yamada, Takuma
    Arakawa, Hiroyuki
    Fujisawa, Akihide
    [J]. PLASMA AND FUSION RESEARCH, 2023, 18
  • [3] A data-driven multi-field analysis of nanocomposites for hydrogen storage
    Michopoulos, J
    Tran, N
    Lambrakos, S
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 80 - 87
  • [4] Characteristic value decomposition: A unifying paradigm for data-driven modal
    Li, He-Wen-Xuan
    Stein, Dalton L.
    Chelidze, David
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 222
  • [5] Multiset Singular Value Decomposition for Joint Analysis of Multi Modal Data: Application to Fingerprint Analysis
    Emge, Darren K.
    Adali, Tuelay
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2014, 2014, 9092
  • [6] Data-driven experimental modal analysis by Dynamic Mode Decomposition
    Saito, Akira
    Kuno, Tomohiro
    [J]. JOURNAL OF SOUND AND VIBRATION, 2020, 481
  • [7] Data-driven spatiotemporal modal decomposition for time frequency analysis
    Hirsh, Seth M.
    Brunton, Bingni W.
    Kutz, J. Nathan
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) : 771 - 790
  • [8] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    [J]. NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231
  • [9] Data repairing and resolution enhancement using data-driven modal decomposition and deep learning
    Hetherington, Ashton
    Serfaty, Daniel
    Corrochano, Adrian
    Soria, Julio
    Le Clainche, Soledad
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 157
  • [10] The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool
    Harmouche, Jinane
    Fourer, Dominique
    Auger, Francois
    Borgnat, Pierre
    Flandrin, Patrick
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (01) : 251 - 263